期刊论文详细信息
BMC Medical Research Methodology
A Bayesian latent class extension of naive Bayesian classifier and its application to the classification of gastric cancer patients
Research
Anoshirvan Kazemnejad1  Kimiya Gohari1  Ali Sheidaei2  Farzad Eskandari3  Samaneh Saberi4  Marjan Mohammadi4  Maryam Esmaieli4 
[1] Department of Biostatistics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran;Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran;Department of Statistics, Allameh Tabataba’i University, Tehran, Iran;HPGC Research Group, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran;
关键词: Naïve Bayesian classifier;    Bayesian latent class analysis;    Gibbs sampling;    Expectation maximization algorithm;    Gastric cancer;   
DOI  :  10.1186/s12874-023-02013-4
 received in 2022-11-05, accepted in 2023-08-08,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundThe Naive Bayes (NB) classifier is a powerful supervised algorithm widely used in Machine Learning (ML). However, its effectiveness relies on a strict assumption of conditional independence, which is often violated in real-world scenarios. To address this limitation, various studies have explored extensions of NB that tackle the issue of non-conditional independence in the data. These approaches can be broadly categorized into two main categories: feature selection and structure expansion.In this particular study, we propose a novel approach to enhancing NB by introducing a latent variable as the parent of the attributes. We define this latent variable using a flexible technique called Bayesian Latent Class Analysis (BLCA). As a result, our final model combines the strengths of NB and BLCA, giving rise to what we refer to as NB-BLCA. By incorporating the latent variable, we aim to capture complex dependencies among the attributes and improve the overall performance of the classifier.MethodsBoth Expectation-Maximization (EM) algorithm and the Gibbs sampling approach were offered for parameter learning. A simulation study was conducted to evaluate the classification of the model in comparison with the ordinary NB model. In addition, real-world data related to 976 Gastric Cancer (GC) and 1189 Non-ulcer dyspepsia (NUD) patients was used to show the model's performance in an actual application. The validity of models was evaluated using the 10-fold cross-validation.ResultsThe presented model was superior to ordinary NB in all the simulation scenarios according to higher classification sensitivity and specificity in test data. The NB-BLCA model using Gibbs sampling accuracy was 87.77 (95% CI: 84.87-90.29). This index was estimated at 77.22 (95% CI: 73.64-80.53) and 74.71 (95% CI: 71.02-78.15) for the NB-BLCA model using the EM algorithm and ordinary NB classifier, respectively.ConclusionsWhen considering the modification of the NB classifier, incorporating a latent component into the model offers numerous advantages, particularly within medical and health-related contexts. By doing so, the researchers can bypass the extensive search algorithm and structure learning required in the local learning and structure extension approach. The inclusion of latent class variables allows for the integration of all attributes during model construction. Consequently, the NB-BLCA model serves as a suitable alternative to conventional NB classifiers when the assumption of independence is violated, especially in domains pertaining to health and medicine.

【 授权许可】

CC BY   
© BioMed Central Ltd., part of Springer Nature 2023

【 预 览 】
附件列表
Files Size Format View
RO202309152118644ZK.pdf 2198KB PDF download
Fig. 2 57KB Image download
Fig. 2 165KB Image download
Fig. 3 232KB Image download
Fig. 5 101KB Image download
Fig. 2 3694KB Image download
Fig. 1 83KB Image download
Fig. 6 154KB Image download
Fig. 2 118KB Image download
Fig. 2 2468KB Image download
Fig. 3 582KB Image download
Fig. 3 166KB Image download
Fig. 4 726KB Image download
MediaObjects/12888_2023_5109_MOESM2_ESM.docx 12KB Other download
Fig. 4 219KB Image download
40538_2023_441_Article_IEq3.gif 1KB Image download
Fig. 4 232KB Image download
Fig. 1 1870KB Image download
Fig. 1 173KB Image download
MediaObjects/41016_2023_336_MOESM1_ESM.pdf 167KB PDF download
Fig. 5 664KB Image download
Fig. 2 212KB Image download
40854_2023_500_Article_IEq6.gif 1KB Image download
Fig. 8 252KB Image download
Fig. 7 451KB Image download
Fig. 3 407KB Image download
Figs. 1 277KB Image download
MediaObjects/40798_2022_550_MOESM1_ESM.docx 12KB Other download
Fig. 1 875KB Image download
MediaObjects/12888_2023_5052_MOESM1_ESM.xlsx 140KB Other download
MediaObjects/40249_2023_1132_MOESM2_ESM.docx 23KB Other download
MediaObjects/40249_2023_1132_MOESM3_ESM.docx 27KB Other download
MediaObjects/12864_2023_9608_MOESM2_ESM.xlsx 82KB Other download
Fig. 15 148KB Image download
Fig. 2 593KB Image download
Fig. 7 2382KB Image download
Fig. 16 674KB Image download
Fig. 8 593KB Image download
Fig. 2 462KB Image download
MediaObjects/12862_2023_2133_MOESM13_ESM.pdf 359KB PDF download
Fig. 1 163KB Image download
Fig. 1 167KB Image download
MediaObjects/40249_2023_1124_MOESM1_ESM.docx 16KB Other download
Fig. 9 589KB Image download
Fig. 2 98KB Image download
MediaObjects/13690_2023_1171_MOESM1_ESM.docx 15KB Other download
MediaObjects/12902_2023_1423_MOESM1_ESM.pdf 2536KB PDF download
Fig. 2 97KB Image download
Fig. 3 64KB Image download
Fig. 3 111KB Image download
MediaObjects/41408_2023_889_MOESM1_ESM.docx 128KB Other download
MediaObjects/12888_2023_5016_MOESM1_ESM.docx 84KB Other download
Fig. 7 1396KB Image download
Fig. 4 141KB Image download
Fig. 3 121KB Image download
Fig. 5 634KB Image download
955KB Image download
Fig. 6 271KB Image download
Fig. 6 2821KB Image download
Fig. 9 324KB Image download
Fig. 6 446KB Image download
MediaObjects/12951_2023_1985_MOESM1_ESM.pdf 2132KB PDF download
Fig. 4 1862KB Image download
Fig. 1 295KB Image download
Fig. 1 313KB Image download
MediaObjects/41408_2023_890_MOESM1_ESM.docx 3614KB Other download
MediaObjects/40249_2023_1120_MOESM1_ESM.tif 1308KB Other download
Fig. 2 697KB Image download
Fig. 2 139KB Image download
Fig. 1 473KB Image download
12888_2023_5115_Article_IEq1.gif 1KB Image download
Table 1 164KB Table download
MediaObjects/12951_2020_626_MOESM1_ESM.docx 4431KB Other download
MediaObjects/12954_2023_832_MOESM1_ESM.docx 64KB Other download
Fig. 3 1103KB Image download
Fig. 2 102KB Image download
Fig. 3 155KB Image download
MediaObjects/13690_2023_1169_MOESM1_ESM.docx 16KB Other download
40517_2023_266_Article_IEq10.gif 1KB Image download
MediaObjects/12888_2023_5016_MOESM2_ESM.docx 14KB Other download
40517_2023_266_Article_IEq12.gif 1KB Image download
40517_2023_266_Article_IEq14.gif 1KB Image download
40517_2023_266_Article_IEq15.gif 1KB Image download
12888_2023_5115_Article_IEq2.gif 1KB Image download
Fig. 2 697KB Image download
40517_2023_266_Article_IEq18.gif 1KB Image download
40517_2023_266_Article_IEq19.gif 1KB Image download
MediaObjects/41408_2023_899_MOESM1_ESM.docx 3828KB Other download
MediaObjects/13690_2023_1164_MOESM1_ESM.pdf 147KB PDF download
MediaObjects/12888_2023_5016_MOESM3_ESM.docx 89KB Other download
743KB Image download
MediaObjects/13690_2023_1153_MOESM1_ESM.pdf 170KB PDF download
Fig. 1 547KB Image download
40517_2023_266_Article_IEq26.gif 1KB Image download
MediaObjects/13690_2023_1153_MOESM2_ESM.pdf 215KB PDF download
40517_2023_266_Article_IEq28.gif 1KB Image download
40517_2023_266_Article_IEq29.gif 1KB Image download
MediaObjects/13690_2023_1153_MOESM3_ESM.pdf 229KB PDF download
40517_2023_266_Article_IEq31.gif 1KB Image download
40517_2023_266_Article_IEq32.gif 1KB Image download
MediaObjects/13690_2023_1153_MOESM4_ESM.pdf 287KB PDF download
40517_2023_266_Article_IEq34.gif 1KB Image download
40517_2023_266_Article_IEq35.gif 1KB Image download
MediaObjects/13690_2023_1153_MOESM5_ESM.pdf 219KB PDF download
40517_2023_266_Article_IEq37.gif 1KB Image download
40517_2023_266_Article_IEq38.gif 1KB Image download
【 图 表 】

40517_2023_266_Article_IEq38.gif

40517_2023_266_Article_IEq37.gif

40517_2023_266_Article_IEq35.gif

40517_2023_266_Article_IEq34.gif

40517_2023_266_Article_IEq32.gif

40517_2023_266_Article_IEq31.gif

40517_2023_266_Article_IEq29.gif

40517_2023_266_Article_IEq28.gif

40517_2023_266_Article_IEq26.gif

Fig. 1

40517_2023_266_Article_IEq19.gif

40517_2023_266_Article_IEq18.gif

Fig. 2

12888_2023_5115_Article_IEq2.gif

40517_2023_266_Article_IEq15.gif

40517_2023_266_Article_IEq14.gif

40517_2023_266_Article_IEq12.gif

40517_2023_266_Article_IEq10.gif

Fig. 3

Fig. 2

Fig. 3

12888_2023_5115_Article_IEq1.gif

Fig. 1

Fig. 2

Fig. 2

Fig. 1

Fig. 1

Fig. 4

Fig. 6

Fig. 9

Fig. 6

Fig. 6

Fig. 5

Fig. 3

Fig. 4

Fig. 7

Fig. 3

Fig. 3

Fig. 2

Fig. 2

Fig. 9

Fig. 1

Fig. 1

Fig. 2

Fig. 8

Fig. 16

Fig. 7

Fig. 2

Fig. 15

Fig. 1

Figs. 1

Fig. 3

Fig. 7

Fig. 8

40854_2023_500_Article_IEq6.gif

Fig. 2

Fig. 5

Fig. 1

Fig. 1

Fig. 4

40538_2023_441_Article_IEq3.gif

Fig. 4

Fig. 4

Fig. 3

Fig. 3

Fig. 2

Fig. 2

Fig. 6

Fig. 1

Fig. 2

Fig. 5

Fig. 3

Fig. 2

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  文献评价指标  
  下载次数:0次 浏览次数:0次