期刊论文详细信息
BMC Bioinformatics
Neuroimaging feature extraction using a neural network classifier for imaging genetics
Research
Leno Rocha1  Michelle F. Miranda1  Farouk S. Nathoo1  Sidi Wu2  Jiguo Cao2  Erin Gibson3  Mirza Faisal Beg3  Cédric Beaulac4 
[1] Department of Mathematics and Statistics, University of Victoria, Victoria, Canada;Department of Statistics and Actuarial Sciences, Simon Fraser University, Burnaby, Canada;School of Engineering Science, Simon Fraser University, Burnaby, Canada;School of Engineering Science, Simon Fraser University, Burnaby, Canada;Department of Mathematics and Statistics, University of Victoria, Victoria, Canada;
关键词: Dimensionality reduction;    Feature extraction;    Neural Network Classifier;    Bayesian Hierarchical Modelling;    Imaging genetics;   
DOI  :  10.1186/s12859-023-05394-x
 received in 2022-09-28, accepted in 2023-06-21,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundDealing with the high dimension of both neuroimaging data and genetic data is a difficult problem in the association of genetic data to neuroimaging. In this article, we tackle the latter problem with an eye toward developing solutions that are relevant for disease prediction. Supported by a vast literature on the predictive power of neural networks, our proposed solution uses neural networks to extract from neuroimaging data features that are relevant for predicting Alzheimer’s Disease (AD) for subsequent relation to genetics. The neuroimaging-genetic pipeline we propose is comprised of image processing, neuroimaging feature extraction and genetic association steps. We present a neural network classifier for extracting neuroimaging features that are related with the disease. The proposed method is data-driven and requires no expert advice or a priori selection of regions of interest. We further propose a multivariate regression with priors specified in the Bayesian framework that allows for group sparsity at multiple levels including SNPs and genes.ResultsWe find the features extracted with our proposed method are better predictors of AD than features used previously in the literature suggesting that single nucleotide polymorphisms (SNPs) related to the features extracted by our proposed method are also more relevant for AD. Our neuroimaging-genetic pipeline lead to the identification of some overlapping and more importantly some different SNPs when compared to those identified with previously used features.ConclusionsThe pipeline we propose combines machine learning and statistical methods to benefit from the strong predictive performance of blackbox models to extract relevant features while preserving the interpretation provided by Bayesian models for genetic association. Finally, we argue in favour of using automatic feature extraction, such as the method we propose, in addition to ROI or voxelwise analysis to find potentially novel disease-relevant SNPs that may not be detected when using ROIs or voxels alone.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202309141136230ZK.pdf 1453KB PDF download
12888_2023_4994_Article_IEq5.gif 1KB Image download
MediaObjects/42004_2023_927_MOESM1_ESM.pdf 3435KB PDF download
234KB Image download
12864_2023_9504_Article_IEq3.gif 1KB Image download
Fig. 1 193KB Image download
Fig. 2 900KB Image download
Fig. 11 1814KB Image download
40249_2023_1114_Article_IEq1.gif 1KB Image download
Fig. 5 664KB Image download
Fig. 1 608KB Image download
40507_2023_185_Article_IEq30.gif 1KB Image download
Fig. 1 55KB Image download
Fig. 1 110KB Image download
40507_2023_185_Article_IEq33.gif 1KB Image download
Fig. 9 722KB Image download
MediaObjects/12902_2023_1390_MOESM2_ESM.docx 802KB Other download
Fig. 2 900KB Image download
Fig. 3 346KB Image download
MediaObjects/12864_2023_9504_MOESM2_ESM.xlsx 116KB Other download
Fig. 1 98KB Image download
MediaObjects/40360_2019_335_MOESM1_ESM.docx 59KB Other download
Fig. 2 673KB Image download
Fig. 6 1340KB Image download
Fig. 2 110KB Image download
679KB Image download
MediaObjects/12862_2023_2130_MOESM3_ESM.docx 25KB Other download
MediaObjects/12862_2023_2130_MOESM4_ESM.xlsx 20KB Other download
Fig. 4 1372KB Image download
40507_2023_185_Article_IEq48.gif 1KB Image download
MediaObjects/40249_2023_1106_MOESM3_ESM.docx 16KB Other download
MediaObjects/12903_2023_3201_MOESM1_ESM.docx 50KB Other download
Fig. 17 770KB Image download
MediaObjects/13046_2023_2728_MOESM1_ESM.docx 18KB Other download
Fig. 2 249KB Image download
MediaObjects/13287_2023_3404_MOESM1_ESM.docx 87665KB Other download
Fig. 5 630KB Image download
Fig. 1 567KB Image download
Fig. 1 499KB Image download
Fig. 2 762KB Image download
Fig. 11 1773KB Image download
Fig. 2 770KB Image download
Fig. 2 286KB Image download
MediaObjects/12944_2023_1842_MOESM3_ESM.docx 17KB Other download
Fig. 6 121KB Image download
MediaObjects/12944_2023_1842_MOESM4_ESM.pdf 2844KB PDF download
MediaObjects/13100_2023_296_MOESM2_ESM.csv 19KB Other download
Fig. 3 1564KB Image download
MediaObjects/13100_2023_296_MOESM3_ESM.csv 17KB Other download
12888_2023_4998_Article_IEq1.gif 1KB Image download
42004_2023_939_Article_IEq2.gif 1KB Image download
Fig. 2 2191KB Image download
42004_2023_939_Article_IEq5.gif 1KB Image download
Fig. 12 1157KB Image download
42004_2023_939_Article_IEq7.gif 1KB Image download
MediaObjects/42004_2023_939_MOESM1_ESM.pdf 1988KB PDF download
Fig. 3 467KB Image download
Fig. 1 133KB Image download
MediaObjects/13100_2023_296_MOESM5_ESM.gz 16178KB Other download
Fig. 4 326KB Image download
Fig. 3 168KB Image download
Fig. 4 1426KB Image download
Scheme 1 1023KB Image download
MediaObjects/40544_2022_719_MOESM1_ESM.pdf 535KB PDF download
Fig. 3 174KB Image download
41534_2023_740_Article_IEq64.gif 1KB Image download
Fig. 1 156KB Image download
Fig. 1 377KB Image download
Fig. 2 292KB Image download
Fig. 6 107KB Image download
MediaObjects/42004_2023_939_MOESM3_ESM.xlsx 456KB Other download
153KB Image download
MediaObjects/13690_2023_1141_MOESM1_ESM.xlsx 23KB Other download
Fig. 5 2626KB Image download
Fig. 2 2609KB Image download
Fig. 1 109KB Image download
Fig. 1 621KB Image download
MediaObjects/42004_2023_939_MOESM6_ESM.xlsx 150KB Other download
Fig. 1 1081KB Image download
Fig. 1 299KB Image download
MediaObjects/42004_2023_939_MOESM8_ESM.xlsx 21KB Other download
Fig. 1 1033KB Image download
Fig. 2 61KB Image download
Fig. 1 397KB Image download
Fig. 2 189KB Image download
Fig. 2 770KB Image download
Fig. 1 1248KB Image download
Fig. 2 172KB Image download
【 图 表 】

Fig. 2

Fig. 1

Fig. 2

Fig. 2

Fig. 1

Fig. 2

Fig. 1

Fig. 1

Fig. 1

Fig. 1

Fig. 1

Fig. 2

Fig. 5

Fig. 6

Fig. 2

Fig. 1

Fig. 1

41534_2023_740_Article_IEq64.gif

Fig. 3

Scheme 1

Fig. 4

Fig. 3

Fig. 4

Fig. 1

Fig. 3

42004_2023_939_Article_IEq7.gif

Fig. 12

42004_2023_939_Article_IEq5.gif

Fig. 2

42004_2023_939_Article_IEq2.gif

12888_2023_4998_Article_IEq1.gif

Fig. 3

Fig. 6

Fig. 2

Fig. 2

Fig. 11

Fig. 2

Fig. 1

Fig. 1

Fig. 5

Fig. 2

Fig. 17

40507_2023_185_Article_IEq48.gif

Fig. 4

Fig. 2

Fig. 6

Fig. 2

Fig. 1

Fig. 3

Fig. 2

Fig. 9

40507_2023_185_Article_IEq33.gif

Fig. 1

Fig. 1

40507_2023_185_Article_IEq30.gif

Fig. 1

Fig. 5

40249_2023_1114_Article_IEq1.gif

Fig. 11

Fig. 2

Fig. 1

12864_2023_9504_Article_IEq3.gif

12888_2023_4994_Article_IEq5.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  文献评价指标  
  下载次数:2次 浏览次数:1次