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Supplementary Text 1. Details of implementation and computing resources 74 

All the methods were implemented in Python (v3.7.7). The dataset curation was done using Pandas 75 

(v1.2.5) and RDKit (v2020.09.5.0). Conformers were generated by ETKDG and MMFF94 in RDKit. 76 

The implementation of GNN was based on Tensorflow (v2.4.0-GPU) and spektral (v1.0.5). All the 77 

computations were submitted to the Inspur TS10000 HPC cluster of Central South University. For the 78 

training of the SigmaCCS model, the allocated node was a GPU node with 2 Intel(R) Xeon(R) Gold 79 

6248R processors, 2 Nvidia Tesla V100s, and 384G DDR4 memory. For the large-scale prediction of 80 

CCS values, a total of 25 CPU nodes were allocated. Each CPU node includes 2 Intel(R) Xeon(R) 81 

Gold 6248 processors and 192G DDR4 memory. 82 
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Supplementary Text 2. Details of performance evaluation of SigmaCCS and CCSbase on the external 83 

test set and the plant dataset 84 

The external test set and the plant dataset were used to compare the performance of SigmaCCS with 85 

CCSbase. 86 

(a). Performance evaluation on the external test set. We investigate whether the training set of 87 

CCSbase contains the molecules in the external test set. Since the prediction model (V1.2) of CCSbase 88 

is used to make a comparison with SigmaCCS, the experimental database (V1.3) for training the 89 

prediction model (V1.2) was downloaded from its official website. The training set of CCSbase is 90 

obtained by data splitting using the random seed described in the article1. There are 50 molecules of 91 

the external test set included in the training set of CCSbase. Then, the external test set was further 92 

deduplicated by removing molecules in the training set of CCSbase. The number of CCS entries is 93 

294 in the external test set. As shown in Supplementary Figure 3a and 3b, R2 and Median RE of 94 

SigmaCCS on the external test set are 0.9780 and 1.8211%, and R2 and Median RE of CCSbase on 95 

the external test set are 0.9778 and 1.3608%. A disadvantage of Median RE is that it does not fully use 96 

all the data. Therefore, the root mean squared error (RMSE) is used as the metric to evaluate the 97 

performance of SigmaCCS and CCSbase. The RMSE of SigmaCCS on the external test set is 6.7019, 98 

which is better than the corresponding value of CCSbase (6.7240). In addition, the number of 99 

molecules with relative errors larger than 8% based on the predicted CCS values of SigmaCCS and 100 

CCSbase is 6 and 9, respectively. CCSbase first uses K-Means clustering for the untargeted 101 

classification of chemical structures and then performs CCS predictions using specific models trained 102 

on the corresponding cluster data. We selected three molecules with the largest relative error and three 103 

with the smallest relative error of CCSbase, converted the molecules into numerical representation 104 

based on structural features (MQNs, MS adduct, and m/z), and then calculated the distances to the 105 

centroid of each cluster. As listed in Supplementary Table 8, molecules with large errors are further 106 

from the cluster centroids than those with small errors. There exists a possibility of misclassification 107 

by K-Means. If the molecule is assigned to an unsuitable cluster, it will make a relatively large 108 

deviation between the predicted CCS value and the experimental CCS value. 109 

(b). Performance evaluation on the plant dataset. The plant dataset of 146 natural plant products2 110 

was used to compare SigmaCCS and CCSbase fairly. After removing unpredictable adducts and 111 

deduplicating molecules in the training set of SigmaCCS, the number of CCS entries is 114 in the 112 

plant dataset. There is a molecule (Compound CID: 98775) whose relative error is 29.75% based on 113 

the predicted value of CCSbase. Therefore, the molecule is regarded as an outlier and has been 114 

removed from the plant dataset. The size of the plant dataset was reduced to 113. The scatter plots of 115 

the experimental vs. predicted values of SigmaCCS and CCSbase on the plant dataset are shown in 116 

Supplementary Figure 3c and 3d, respectively. It can be seen that SigmaCCS (R2 = 0.9655, RMSE = 117 

5.3812, and Median RE = 1.4232%) achieves better performances than CCSbase (R2 = 0.9643, RMSE 118 

= 5.4720, and Median RE = 2.3211%). 119 
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Supplementary Text 3. The feature importance method 121 

Here, the feature importance method was used to investigate the importance of each atom attribute on 122 

the CCS prediction performance of SigmaCCS. First, the original model was built, and its mean 123 

absolute percentage error (MAPE) on the test set was calculated as MAPEorig. Second, the mask was 124 

used to cover the j-th feature bits on the atoms to make them invalid. The modified molecular graphs 125 

were used to predict the CCS values and calculate the MAPEmask. Then, the feature importance (FI) of 126 

the j-th atom attribute was calculated by: 127 
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Here, yi is the experimental value. n is the number of molecules in the test set, and F is the number of 130 

atom attributes. Finally, the FI values of all the atom attributes were calculated using equation (S2) by 131 

averaging the prediction results of 10 models. 132 
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Supplementary Text 4. CCS prediction for the same molecule with different coordinates 134 

The CCS value of a molecule is closely related to its chemical structure and three-dimensional 135 

conformation3. The 3D coordinates of a molecule contain structural information. In this study, 136 

SigmaCCS includes 3D coordinates into atom feature vectors as additional information reflecting the 137 

molecular structure. To verify that the lacking invariance of 3D coordinates does not lead to a risk of 138 

overfitting, we have performed the following experiments. 139 

There is an optional parameter (randomSeed) when using ETKDG to obtain the 3D coordinates of a 140 

molecule. By setting different seeds, different coordinates can be obtained for a molecule on multiple 141 

runs. Two molecules were randomly selected from the test set as examples, and 2, 10, 100, and 1000 142 

conformers were generated for each molecule using different seeds of ETKDG and MMFF94. Their 143 

3D conformers are visualized in Supplementary Figure 4. ETKDG uses distance geometry to obtain 144 

the 3D coordinates of each atom in a molecule. Since the distance geometry places the center of mass 145 

of the molecule at the origin of the coordinates4, there are no shifts in 3D conformers of the same 146 

molecule generated by ETKDG. It can be seen from the aggregation of 1000 conformers of the same 147 

molecule into a sphere in Supplementary Figure 4. Since the data sets of SigmaCCS are processed by 148 

ETKDG, there is no shift problem in this study. 149 

As shown in Supplementary Figure 4a and 4b, the 3D coordinates of the conformers obtained using 150 

ETKDG and MMFF94 have large rotations instead of small random disturbances for the same 151 

molecule. The 1000 conformers of the two molecules were fed into SigmaCCS to predict their CCS 152 

values. The distributions of the predicted CCS values of the two molecules are shown in 153 

Supplementary Figure 5a and 5b, respectively. The mean value and standard deviation of the predicted 154 

CCS values of 2,5-dihydroxybenzoid acid with 1000 different 3D coordinates are 122.63 Å2 and 0.246 155 

Å2, respectively. The mean value and standard deviation of the predicted CCS values of Praziquantel 156 

with 1000 different 3D coordinates are 176.41 Å2 and 0.228 Å2, respectively. It can be seen that the 157 

predicted CCS values are stable using conformers with large rotations as inputs. 158 

We performed 30 batches of CCS predictions for the test set using different seeds of ETKDG. The 159 

performance of SigmaCCS on the test set with different coordinates is listed in Supplementary Table 160 

9. The standard deviation of R2 and Median RE on the test set are 0.00008 and 0.0269%, respectively. 161 

In addition, we performed the same experiment on the external test set. The performance of the model 162 

is evaluated on the external test set with different coordinates obtained by ETKDG and MMFF94 listed 163 

in Supplementary Table 10. The standard deviation of R2 and Median RE on the external test set are 164 

0.00028 and 0.0445%, respectively. These results show that the model still performs well on CCS 165 

prediction even if the obtained coordinates of the same molecule have large rotations. Therefore, 166 

SigmaCCS is a reliable model, and there is no risk of overfitting with the 3D coordinates as the node 167 

attributes. 168 

Since the 3D coordinates of all molecules in the training and test sets are generated using ETKDG and 169 

MMFF94, the conformers of the same molecule gradually cluster into the sphere with the increasing 170 

number of conformers, as visualized in Supplementary Figure 4. Therefore, we rotated each molecule 171 

in the test set to a completely random position to evaluate the performance on the test set with different 172 

rotation angles. As shown in Supplementary Figure 6, the 3D conformer of the molecule (PubChem 173 

CID: 3469) is rotated around the x, y, and z-axes by random angles, respectively. The 3D conformer 174 

of each molecule in the test set was generated using ETKDG and MMFF94. Then, it was rotated to a 175 

completely random position around the x, y, and z-axes using its random rotation matrix, respectively. 176 

The rotation angle of each molecule in the test set is completely random. As listed in Supplementary 177 

Table 11, the standard deviation of R2 and Median RE on the test set are 0.00006 and 0.0213%, 178 

respectively. There is no performance drop on the test set with completely random rotation angles. The 179 

result shows that any rotational position work as good as the initial position. 180 

  181 
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Supplementary Text 5. in-silico CCS database generation 182 

A structural database with CCS values predicted by SigmaCCS should be established to assist in 183 

identifying the compound. It mainly consists of four steps, including molecular selection, CCS value 184 

prediction, database schema definition, and creation. 185 

Molecules in the structural database should be selected to meet the requirements of both models and 186 

application fields. In this study, we focus on predicting the CCS values of compounds in organisms by 187 

SigmaCCS. Therefore, several rules are defined to filter out molecules that unlikely present in 188 

organisms and could not be predicted by SigmaCCS. First, the molecule must contain both carbon and 189 

hydrogen atoms, which can guarantee that the molecules chosen are highly possible to be organic 190 

compounds. Second, the elements of each selected molecule must be a subset of all the elements (C, 191 

H, O, N, P, S, F, Cl, Br, I, Co, As, and Se) in the training set. Third, the selected molecules should not 192 

contain ionic bonds, and this is because the training set of SigmaCCS does not include ionic bonds. 193 

Furthermore, the other special requirements for the selected molecules can also be set as filter rules 194 

according to the application fields or the models. 195 

Molecular structure databases are usually large and often have millions of molecules even after 196 

filtering by the above rules. Each molecule should go through the steps of 3D conformer generation, 197 

molecular graph construction, and SigmaCCS prediction to obtain its CCS values. Although each step 198 

is relatively fast and does not take much time for a single molecule (0.4s for conformer, 0.0008s for 199 

graph, and 0.013s for prediction on CPU). When applied to large-scale molecules, theoretically, the 200 

prediction procedure would take 5 days for one million molecules and 500 days for 100 million 201 

molecules. By integrating these three steps into a function and parallelizing the function with the 202 

multiprocessing package in Python, multi-core computing can be leveraged to accelerate the prediction 203 

process. For one million molecules, about 30 times acceleration can be achieved using a single CPU 204 

node (48 cores), and the CCS value prediction for all molecules can be finished within 5 hours. For 205 

100 million molecules, about 500 times acceleration can be achieved by splitting and assigning the 206 

computational task to 25 CPU nodes (48×25=1200 cores) using the Slurm workload manager, and the 207 

CCS prediction for all molecules can be finished within two days. The number of nodes can be adjusted 208 

according to the number of selected molecules and the acceptable time of the prediction task. 209 

The creation of a database requires a well-defined schema. After thorough consideration of the 210 

properties of molecules, the following fields are chosen to store in the database: molecular identifier 211 

in the original database, InChi identifier, InChIKey, SMILES string, formula, molecular weight, 212 

predicted CCS values of [M+H]+, [M+Na]+ and [M-H]−. Then, the database and table can be created 213 

according to the defined schema in any database engine (SQLite, MySQL, etc.). For all the selected 214 

molecules, their relevant information and predicted CCS values are stored in standard CSV format 215 

during the prediction procedure, which can be imported into the database in batches. It is worth 216 

mentioning that the combined index can be created on the columns of molecular weight and predicted 217 

CCS values to accelerate the retrieval procedure of candidates. 218 

The application of CCS values in compound identification requires the prediction of CCS values for 219 

a large number of molecules to improve compound coverages. PubChem is the largest collection of 220 

freely accessible chemical information5, 6, 7. In the compound database of PubChem, there are 110 221 

million entries of compounds with names, identifiers, structures, physicochemical properties, spectral 222 

information, etc. Therefore, the compounds in the compound database of PubChem were chosen to 223 

build the in-silico CCS database with SigmaCCS. The PubChem database was downloaded from its 224 

FTP site in structure data format (SDF) on May 6th, 2021. There were 314 SDF files containing 110 225 

million entries. The ID, InChi, InChikey, SMILES, formula, and molecular weight were parsed from 226 

the SDF files and saved as CSV files. After filtering with criteria of hydrogen & carbon, elements, 227 

bond, mass & number of atoms, isotopes & duplication, there were 94,161,896 retained entries. The 228 

procedure of extracting and selecting proper molecules from PubChem to build the in-silico CCS 229 

database is shown in Supplementary Figure 7. 230 

High-performance computing (HPC) is crucial to scientific research with big data in chemistry. The 231 

time can be reduced from years to days when migrating the computing tasks from a personal computer 232 

to an HPC cluster. Twenty-five CPU nodes with 1200 cores were allocated in the HPC cluster of 233 



 

9 
 

Central South University to accelerate 3D conformer generation, molecular graph construction, and 234 

CCS prediction. The computational tasks were evenly distributed among these 25 nodes. All the 235 

computing tasks were completed within two days. The ETKDG and MMFF94 were used to generate 236 

3D conformers for all 94,161,896 molecules. The 3D conformer generation failed for 695 molecules. 237 

Among them, 33 molecules attributed to ETKDG and 662 molecules to MMFF94. Their SMILES, 238 

InChi, InChikey, PubChem ID, source, and reason are listed in Supplementary Data 2. The number of 239 

remaining molecules in the in-silico CCS database is 94,161,201. For each molecule, its predicted 240 

CCS values of [M+H]+, [M+Na]+, and [M-H]− adducts were filled in the CSV files. Then, these CSV 241 

files were uploaded to the Zenodo open-access repository (https://doi.org/10.5281/zenodo.5501673). 242 

  243 



 

10 
 

Supplementary Text 6. Multidimensional filtering assisted by SigmaCCS 244 

The CCS values derived from ion mobility spectrometry (IMS) can be used to improve the accuracy 245 

of compound identification. The starting point for multidimensional filtering is the acquired data (m/z, 246 

RT, and CCS) of the compound to be identified and an in-silico CCS database. Therefore, we 247 

downloaded the mouse lung dataset from this article8, and there are 2,070 lipids with the m/z, RT, and 248 

CCS information in the mouse lung dataset. After the removal of unpredictable adducts and empty 249 

SMILES strings, 761 lipids are in negative ion mode, and 262 lipids are in positive ion mode. Since 250 

more lipids need to be identified in negative ion mode than in positive ion mode, the negative ion 251 

mode is chosen for multidimensional filtering. Meanwhile, LipidBlast was downloaded from its 252 

official website. The dataset with negative ion mode has a total of 356,477 molecules of 94 classes. 253 

After removing unpredictable adducts, there are 256,696 retained entries. The CCS values of the 254 

compounds were predicted by SigmaCCS to build the in-silico CCS database. Predicting RT from the 255 

molecular structure is a difficult task because it is susceptible to experimental conditions. With the 256 

GNN-RT method9 and the transfer learning technique10, the pre-trained GNN-RT model can be 257 

transferred to the target chromatographic system using only about 100 molecules with experimental 258 

RTs. The CCS filter is used as the final filtering step to show the performance of CCS values predicted 259 

by SigmaCCS for multidimensional filtering. The reason for not using information from the MS/MS 260 

dimension is that there is no suitable prediction method for tandem mass spectra of lipids. The detailed 261 

process of multidimensional filtering is as follows: 262 

(a). Filtering with m/z. For each molecule in the LipidBlast dataset, its m/z was stored as precursor 263 

m/z. The list of the candidate molecules (MList) can be retrieved from the LipidBlast dataset with the 264 

experimental m/z and the m/z threshold (tm). When tm was set to 30 ppm, the false negative rate was 265 

0.31%. The scoring function for m/z is defined as follows: 266 
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Here M is the relative error between the m/z of adduct ions in the candidate list and the m/z of adduct 268 

ions calculated by RDKit. Mmax and Mmin are the maximum and minimum mass errors, respectively. 269 

The default values for Mmax and Mmin are 20 ppm and 50 ppm, respectively. 270 

(b). Filtering with m/z and retention time. The GNN-RT model was pre-trained by the SMRT 271 

dataset11 (80,038 small molecules with experimental RTs) and transferred to the MS-DIAL 4 dataset 272 

containing 4,303 molecules of 108 lipid subclasses. The transferred model can achieve good 273 

performance in retention time prediction for the lipid chromatographic system. The RT-filtered list of 274 

candidates (RList) was obtained by eliminating the molecules in the MList using the experimental RT 275 

and the RT filtering threshold (tr). When tr was set as the relative error of 20%, the false negative rate 276 

was 1.1858%. The scoring function for RT is defined as follows: 277 
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Here R is the relative error between the predicted and measured RTs. Rmax and Rmin are the maximum 279 

and minimum relative errors in the GNN-RT test set. 280 

(c). Filtering with m/z, retention time and CCS. The CCS values of all the candidates in the RList 281 

were predicted by SigmaCCS. Similarly, if the relative error of a candidate is larger than a given 282 

threshold, it should be eliminated from the candidate list as a false positive candidate. The CCS-filtered 283 

list of candidates (CList) was obtained by eliminating the molecules in the RList by comparing the 284 

relative error between the experimental and predicted CCS values with the CCS filtering threshold (tc). 285 

When tc was set as the relative error of 5%, the false negative rate was 0.9%. The scoring function for 286 

CCS values is defined as follows: 287 
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Here C is the relative error between the predicted and measured CCS values. Cmax and Cmin are the 289 

maximum and minimum relative errors in the test set of SigmaCCS, respectively. The relative error of 290 

m/z, RT, and CCS can be calculated as follows: 291 
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Xpred is the predicted value of the candidate molecule, and Xexp is the measured value of the component 293 

to be identified. To quantitatively analyze the matching degree between the predicted and experimental 294 

values, the fused score of a candidate molecule is calculated as follows: 295 
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Here Wm, Wr, and Wc are the weights for m/z, RT, and CCS scores. The score function weights for m/z, 297 

RT, and CCS were set as 0.6, 0.2, and 0.2, respectively. Finally, the candidate molecules are ranked 298 

according to their fused scores for multidimensional filtering. 299 

The sorted CList was obtained by ranking the candidates in the CList according to their fused scores 300 

in descending order. The ranking of each lipid was analyzed, and recall@1, recall@10, recall@20, 301 

recall@30, and recall@40 were 28.9%, 63.5%, 79.6%, 91.2%, and 94.7%, respectively. Results of the 302 

lipids filtering with the m/z, m/z + RT, and m/z + RT + CCS are listed in Supplementary Table 8. 303 

Recall@1 increases from 15.2% to 24.6% and 28.9%, and recall@30 increases significantly from 47.6% 304 

to 78.4% and 91.2% when including m/z, RT, and CCS, gradually. It can be seen that the rankings of 305 

the correct molecules increase after each filtering step. The CCS values predicted by SigmaCCS are 306 

valuable for filtering false positives. Furthermore, in the case of isomeric compounds, the lipid 307 

(PubChem CID: 114944) was identified as an example. The number of candidates at each step and the 308 

ranking of the lipid are shown in Supplementary Figure 8. Results show that the ranking of the 309 

compound is 49th in the MList of 88 candidates, the ranking of the compound is 5th in the RList of 55 310 

candidates, and the ranking of the compound is 1sh in the CList of 55 candidates. In short, the predicted 311 

CCS values by SigmaCCS, along with accurate m/z and RTs of compounds, were fused together to 312 

improve the accuracy of compound identification. When searching large structural libraries for 313 

compound identification, the application of multidimensional information can efficiently remove false 314 

positive compounds and significantly improve the accuracy of identification. 315 

  316 
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Supplementary Text 7. Details of dataset curation 317 

SMILES string verification: The entries without SIMILES strings were removed from the 318 

dataset. The "." in SMILES strings indicates that two molecular parts are dissociated and not 319 

bonded together. These entries were also deleted from the dataset. After this step, the dataset 320 

size was reduced to 11,813. 321 

Adduct type selection: The [M+H]+, [M+Na]+, and [M-H]- are the three most common types 322 

of adducts in LC-MS analysis. Consequently, the entries of [M+H]+, [M+Na]+, and [M-H]- 323 

adduct types were retained in the dataset, and all the entries of other adduct types were removed 324 

from the dataset. After this step, the dataset size was reduced to 8,829. 325 

Median of CCS values: The CCSbase was created by merging multiple datasets. There exists 326 

the same adduct with multiple different CCS values. To solve this problem, the Median of the 327 

multiple CCS values was taken as the CCS value for this adduct. After this step, the dataset 328 

size was reduced to 5,645. 329 

Unsuccessful conformation generation: The 3D conformers are good starting points for 330 

theoretical calculation and model-based prediction of CCS values. Here, the conformer 331 

generator and molecular force field in RDKit were used to construct the 3D conformer of each 332 

molecule from its SMILES string and optimize the conformation. There are a tiny number of 333 

molecules (5 in 5,645 entries) whose conformations cannot be generated by RDKit even after 334 

trying three times. They are listed in Supplementary Data 2, and the values of the source 335 

column are marked as CCSbase. Those five molecules were eliminated from the dataset. The 336 

dataset size was reduced to 5,640. 337 

Outlier removal: In DeepCCS, CCS prediction tools have been shown to be potentially useful for 338 

database validation. Suspect measurements can be detected by comparing predicted and experimental 339 

CCS values. Most models of CCS prediction have a median relative error (Median RE) of around 2%. 340 

According to 5 × Median RE, if the relative error of a molecule is larger than 10%, it is classified as 341 

an outlier. Since the training set of SigmaCCS was obtained from CCSbase, we compared the CCS 342 

values predicted by CCSbase with measured CCS values to remove outliers. There were 43 molecules 343 

whose relative error larger than 10% based on the predicted values of CCSbase. It was also found that 344 

the CCS values of some molecules did not match with the SMILES strings by comparing the SMILES 345 

string provided by CCSbase and the formula provided in the corresponding source. It further illustrates 346 

the rationality of outlier removal. All 43 molecules are listed in Supplementary Data 3. These 43 347 

molecules were removed from the dataset, and the dataset size was reduced to 5,597. 348 

 349 
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Supplementary Text 8. Details of evaluation metrics 350 

To evaluate the performance of SigmaCCS on the CCS prediction, the metrics used in this study are 351 

the coefficient of determination (R2) and the median relative error (Median RE). The R2 and Median 352 

RE are defined as follows: 353 
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Here 
i

y  and ˆ
i

y  are the experimental and predicted CCS values of the i-th molecule. y  is 356 

the mean of the experimental CCS values in the test set or the external test set. n is the number 357 

of molecules in the dataset. 358 

  359 
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 360 

Supplementary Figure 1. The loss curves of the training and validation subsets in the final 361 

training with the optimized hyperparameters. 362 

  363 
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 364 

Supplementary Figure 2. Performance evaluation of SigmaCCS and DeepCCS on the external 365 

test set. 366 

  367 
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 368 

Supplementary Figure 3. Performance evaluation of SigmaCCS and CCSbase. a SigmaCCS on 369 

the external test set. b CCSbase on the external test set. c SigmaCCS on the plant dataset. d CCSbase 370 

on the plant dataset. 371 

  372 
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 373 
Supplementary Figure 4. Visualization of the 3D conformers of two randomly chosen molecules 374 

generated by ETKDG and MMFF94. Different numbers of conformers (2, 10, 100, and 1000) are 375 

shown from left to right, respectively. Different colors indicate different 3D conformers of the same 376 

molecule. a 2,5-dihydroxybenzoic acid. b Praziquantel. 377 

  378 
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 379 
Supplementary Figure 5. Histograms with fitted density curves for the predicted CCS values of 380 

the molecules with 1000 different 3D coordinates generated by ETKDG and MMFF94. a 2,5-381 

dihydroxybenzoic acid. b Praziquantel. 382 

  383 
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 384 

Supplementary Figure 6. Visualization of the 3D conformers of the molecule named 2,5-385 

dihydroxybenzoic acid with completely random rotation. a Initial position of the 3D conformer. b 386 

The conformer rotates around the x-axis by a random rotation angle. c The conformer rotates around 387 

the y-axis by a random rotation angle. d The conformer rotates around the z-axis by a random rotation 388 

angle. e The conformer rotates around the x, y, and z-axes by random rotation angles. The grey 389 

conformer in (b-e) is the initial position before rotating the conformer. The rotation angles around the 390 

x, y, and z-axes are 60°, 150°, and 270°, respectively. 391 

  392 
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 393 

 394 

Supplementary Figure 7. Visual representation of experimental CCS vs. m/z for all adducts in 395 

the training and test sets of SigmaCCS. 396 

  397 
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 398 

Supplementary Figure 8. Extraction and selection of proper molecules from PubChem to build 399 

the in-silico CCS database. a compound entries downloaded from the PubChem FTP site. b 400 

extraction of the PubChem ID, InChi, InChikey, SMILES, formula, and molecular weight from 314 401 

structure data format (SDF) files. The extracted information was saved as the comma-separated values 402 

(CSV) files for further processing. c hydrogen and carbon filtering rule: Molecules without hydrogen 403 

or carbon were filtered out from the dataset. d elements filtering rule: The elements in the training set 404 

were C, H, O, N, P, S, F, Cl, Br, I, Co, As, and Se, and the molecules containing other elements were 405 

excluded from the dataset. e bond filtering rule: No molecules included ionic bonds in the training set. 406 

The molecules with "." in their SMILES strings were removed from the dataset. f molecular weight 407 

and atomic number filtering rule: the molecular weights of molecules should be between 100 and 1500. 408 

The atom number of F, Cl, Br, I, Co, As, and Se should not exceed 5. g isotopes and duplicate filtering 409 

rule: Molecules with isotopic in their SMILES strings were eliminated from the dataset since the 410 

training set of the SigmaCCS method did not contain this information. For some compounds, their 411 

chiral isomers and the Canonical SMILES are different PubChem IDs. We only kept their chiral 412 

isomers and removed the Canonical SMILES. h Remained 94,161,896 molecules after filtering the 413 

compounds in PubChem with the above rules. They were used for the subsequent CCS value prediction. 414 
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 415 

 416 

Supplementary Figure 9. Multidimensional filtering assisted by SigmaCCS. The ranking of the 417 

lipid (PubChem CID: 114944) by comparing the experimental data (m/z, RT, and CCS) with the 418 

theoretical or predicted data (molecular weight, RT predicted by GNN-RT, CCS predicted by 419 

SigmaCCS) of candidates. 420 

  421 
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Supplementary Table 1. Settings for some intuitive hyperparameters 422 

Hyperparameter Setting 

Epoch 300 

Batch size 14 

Learning rate 0.0001 

Optimizer Adam 

Activation function ReLU 

Regularizer L2 

Fully connected layers (Dense) 8 

Number of nodes in fully connected layers (Dense) 384 

 423 

 424 

 425 

Supplementary Table 2. Different combinations of two crucial hyperparameters 426 

Type of 

graph 

layer 

Number of 

layers 
Layer1(in, out) Layer2(in, out) Layer3(in, out) 

Pooling 

layers 

ECC 3 ECC(23,16) ECC(16,16) ECC(16,16) 

Global Sum 

Pool 

ECC 2 ECC(23,16) ECC(16,16) — 

ECC 1 ECC(23,16) — — 

GCN 3 GCN(23,16) GCN(16,16) GCN(16,16) 

GCN 2 GCN(23,16) GCN(16,16) — 

GCN 1 GCN(23,16) — — 

 427 
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Supplementary Table 3. The performance of the models with different hyperparameters on the 428 

validation subset 429 

Model Number of layers R2 (std) Median RE% (std) 

ECC 3 0.9933(0.0003) 1.327(0.1204) 

ECC 2 0.9929(0.0009) 1.375(0.1498) 

ECC 1 0.9917(0.0015) 1.581(0.1695) 

GCN 3 0.9882(0.0035) 1.683(0.2872) 

GCN 2 0.9864(0.0037) 1.962(0.3359) 

GCN 1 0.9841(0.0081) 2.081(0.4482) 

 430 

 431 

 432 

Supplementary Table 4. Evaluation of the randomness in parameter initialization on the 433 

performance of the models on the test set 434 

No. R2 Median RE(%) 

1 0.9937 1.297 

2 0.9938 1.353 

3 0.9940 1.235 

4 0.9937 1.327 

5 0.9941 1.258 

6 0.9936 1.391 

7 0.9940 1.214 

8 0.9939 1.232 

9 0.9942 1.163 

10 0.9939 1.149 

Average(standard deviation) 0.9939(0.0002) 1.262(0.0795) 

  435 
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Supplementary Table 5. Performance of SigmaCCS on the test set and the test set after molecular-436 

level deduplication 437 

The test set after molecular-level deduplication Test set 

Size R2 Median RE (%) Size R2 Median RE (%) 

265 

0.9930 1.241 

559 

0.9938 1.209 
0.9928 1.271 0.9938 1.199 
0.9933 1.276 0.9938 1.228 
0.9930 1.260 0.9938 1.246 
0.9931 1.205 0.9938 1.226 
0.9930 1.226 0.9938 1.188 
0.9929 1.218 0.9939 1.222 
0.9930 1.186 0.9939 1.228 
0.9931 1.156 0.9938 1.231 
0.9928 1.286 0.9938 1.254 

Average 0.9930(0.00014) 1.232(0.0424)  0.9938(0.00004) 1.223(0.0202) 

  438 
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Supplementary Table 6. Comparison of SigmaCCS and DeepCCS on the test set 439 

Test data size 
R2 Median RE (%) 

SigmaCCS DeepCCS SigmaCCS DeepCCS 

514* 

0.9940 

0.9794 

1.194 

2.403 

0.9940 1.186 

0.9941 1.205 

0.9945 1.175 

0.9943 1.188 

0.9941 1.166 

0.9941 1.239 

0.9942 1.192 

0.9943 1.150 

0.9944 1.213 

Average 0.9942(0.00017) 0.9794 1.191(0.0249) 2.403 

* The total number of molecules in the test set was 559. DeepCCS could not predict some molecules, so they were removed for fairness 440 
in the comparison. Only 514 molecules were retained. The model marked in bold is the chosen model for further applications. 441 
 442 

 443 

 444 

Supplementary Table 7. Four molecules predicted by SigmaCCS resulted in the largest 445 

improvement compared to DeepCCS 446 

PubChe

m CID 
Molecules SMILES Adduct type 

CCS value 

Experiment SigmaCCS DeepCCS 

6708694 

 

C=C1CC2OC2(C)CC[C@

@H]2[C@@H]1CC2(C)C 
[M+H]+ 144.2 144.8 157.3 

5353532 

 

C(=C/N1CCN(C(c2ccccc2)

c2ccccc2)CC1)\Cc1ccccc1 
[M+H]+ 203.6 200.8 184.2 

774 

 

NCCc1cnc[nH]1 [M+H]+ 120.2 123.4 132.9 

5359421 

 

CN1CC[C@]23c4c5ccc(O)

c4O[C@H]2[C@@H](O)C

C[C@H]3[C@H]1C5 

[M+H]+ 163.6 165.7 178.4 

 447 
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Supplementary Table 8. The 3 molecules with the largest relative error and the 3 molecules with 448 

the smallest relative error and their distances to the cluster centroids 449 

PubChem 

CID 
SMILES Adduct 

Relative 

error 

Distances to the cluster centroids 

cluster 1 cluster 2 cluster 3 

390 

C1=CN(C2(C(C(C(COP(O)(=O

)OP(O)(=O)OC3(C(C(C(C(C(=

O)O)(O3)[H])(O)[H])(O)[H])(O

)[H])[H])(O2)[H])(O)[H])(O)[H

])[H])C(N=C1O)=O 

[M+Na]+ 0.00% 5.5385 8.6734 8.3617 

993 
C(C1(C(C(C(O)(O1)[H])(O)[H]

)(O)[H])[H])O 
[M+Na]+ 0.00% 10.5819 6.7153 3.8234 

86052 

CC(C)CCCC(C)(CCCC(C)(CC

CC1(C)CCC2=C(C)C(=CC(C)=

C2O1)O)[H])[H] 

[M-H]− 0.02% 10.4298 5.9700 3.5839 

10100278 

CN1CCC2=CC(=C(C=C2C1C

C3=CC=C(C=C3)OC)OC4=C(

C=CC(=C4)CC5C6=CC(=C(C=

C6CCN5C)OC)O)O)OC 

[M-H]− 11.78% 9.9133 9.8757 7.2097 

5284447 

[C@@]12(O[C@H]([C@@H](

[C@H](C1)O)C(=O)O)C[C@@

H](O[C@H]1[C@H]([C@H]([

C@@H]([C@H](O1)C)O)N)O)

/C=C/C=C/C=C/C=C/C[C@H](

OC(=O)/C=C/[C@H]1O[C@@

H]1C[C@@H](C2)O)C)O 

[M+H]+ 11.97% 10.1498 12.6841 11.0748 

16204181 

C[C@H]1CC[C@]2([C@H]([C

@H]3[C@@H](O2)C[C@@H]

2[C@@]3(CC[C@H]3[C@H]2

CC=C2[C@@]3(CC[C@@H](

C2)O[C@H]2[C@@H]([C@H]

([C@@H]([C@H](O2)CO)O[C

@H]2[C@@H]([C@@H]([C@

H]([C@@H](O2)C)O)O)O)O)

O[C@H]2[C@@H]([C@@H]([

C@H]([C@@H](O2)C)O)O)O)

C)C)C)OC1 

[M-H]− 17.66% 9.2370 14.1969 12.6064 

  450 
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Supplementary Table 9. Performance of SigmaCCS on the test set with different coordinates 451 

generated by ETKDG and MMFF94 452 

randomSeed R2 Median RE (%) randomSeed R2 Median RE (%) 

45 0.9938 1.204 66 0.9938 1.239 

34 0.9938 1.203 65 0.9938 1.239 

43 0.9938 1.278 90 0.9937 1.259 

80 0.9936 1.231 60 0.9938 1.246 

68 0.9936 1.220 32 0.9937 1.222 

92 0.9939 1.183 67 0.9937 1.241 

88 0.9938 1.212 49 0.9938 1.232 

41 0.9938 1.247 46 0.9938 1.209 

86 0.9937 1.222 13 0.9938 1.204 

98 0.9937 1.255 36 0.9938 1.166 

87 0.9937 1.218 69 0.9936 1.254 

82 0.9937 1.272 52 0.9939 1.220 

21 0.9938 1.255 37 0.9939 1.187 

83 0.9938 1.230 35 0.9939 1.230 

31 0.9939 1.206 91 0.9938 1.187 

Average(standard deviation) 
R2 Median RE 

0.9938(0.00008) 1.226(0.0269) 

 453 

 454 

 455 

Supplementary Table 10. Performance of SigmaCCS on the external test set with different 456 

coordinates generated by ETKDG and MMFF94 457 

randomSeed R2 Median RE (%) randomSeed R2 Median RE (%) 

97 0.9793 1.871 79 0.9802 1.900 

22 0.9793 1.881 12 0.9799 1.918 

45 0.9798 1.892 49 0.9798 1.951 

91 0.9795 1.891 2 0.9795 1.904 

78 0.9799 1.871 21 0.9795 1.867 

80 0.9796 1.954 33 0.9794 1.931 

93 0.9797 1.954 16 0.9796 1.867 

3 0.9799 1.878 7 0.9800 1.962 

50 0.9793 2.006 69 0.9793 1.980 

28 0.9792 1.969 14 0.9800 1.995 

76 0.9802 1.871 60 0.9795 1.929 

6 0.9797 1.976 87 0.9796 1.965 

15 0.9793 2.007 13 0.9797 1.919 

51 0.9796 1.939 65 0.9796 1.984 

66 0.9797 1.928 62 0.9793 1.950 

Average(standard deviation) 
R2 Median RE 

0.9796(0.00028) 1.930(0.0445) 

  458 
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Supplementary Table 11. Performance of SigmaCCS on the test set with completely random 459 

rotation angles 460 

No. R2 Median RE(%) 

Initial position 0.9938 1.209 

completely random rotation 0.9937 1.183 

completely random rotation 0.9938 1.207 

completely random rotation 0.9938 1.165 

completely random rotation 0.9937 1.234 

completely random rotation 0.9938 1.197 

completely random rotation 0.9937 1.243 

completely random rotation 0.9938 1.213 

completely random rotation 0.9938 1.226 

completely random rotation 0.9938 1.180 

completely random rotation 0.9937 1.206 

completely random rotation 0.9938 1.238 

completely random rotation 0.9939 1.237 

completely random rotation 0.9938 1.233 

completely random rotation 0.9937 1.239 

completely random rotation 0.9938 1.214 

completely random rotation 0.9938 1.223 

completely random rotation 0.9938 1.207 

completely random rotation 0.9937 1.220 

completely random rotation 0.9939 1.219 

Average(standard deviation) 0.9938(0.00006) 1.215(0.0213) 

 461 

 462 

 463 

Supplementary Table 12. Results of the multidimensional lipids filtering 464 

 m/z m/z + RT m/z + RT+ CCS 

recall@1 15.2% 24.6% 28.9% 

recall@10 24.8% 59.5% 63.5% 

recall@20 34.3% 73.7% 79.6% 

recall@30 47.6% 78.4% 91.2% 

recall@40 58.3% 80.4% 94.7% 

  465 
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Supplementary Table 13. Source of experimental datasets 466 

No. CCS type Data size Content 

112 DT 498 Lipid, Peptide, Carbohydrate, Small Molecule 

213 DT 131 Lipid 

314 DT 847 Small Molecule 

415 DT 86 Peptide, Small Molecule 

516 DT 451 Lipid 

617 DT 949 Small Molecule 

718 DT 126 Peptide, Small molecule 

819 DT 1078 Small Molecule 

920 DT 405 Lipid 

1021 DT 429 Lipid 

1122 DT 336 Small Molecule 

1223 TW 96 Small Molecule 

1324 TW 257 Lipid 

1425 TW 205 Small Molecule 

1526 TW 1426 Peptide, Small Molecule 

1627 TW 163 Lipid 

1728 TW 357 Small Molecule 

1829 TW 106 Small Molecule 

1930 TW 173 Small Molecule 

2031 TW 179 Lipid 

218 TIMS 2760 Lipid 

2232 TIMS 2950 Lipid 

 467 
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Supplementary Table 14. Attributes of nodes (atoms), edges (chemical bonds), and ion types 468 

Type Attribute Dimension 

Node One-hot encoding of the atom element 13 

Node 
One-hot encoding of the degree of the atom in the molecule, which is the 

number of directly-bonded neighbors (atoms) 
5 

Node One-hot encoding of the atom radius 1 

Node Whether or not the atom is in a ring  2 

Node Atom mass 1 

Node Atom 3D coordinates 3 

Edge One-hot encoding of the bond type 4 

Ion One-hot encoding of the ion type 3 

 469 

 470 

 471 

Supplementary Table 15. The atomic mass and radius used to construct molecular graphs 472 

Atom type Atomic covalent radii(pm) Atomic weights 

H 32 1.00794 

C 75 12.0107 

N 71 14.0067 

O 63 15.9994 

F 64 18.9984032 

P 111 30.973762 

S 103 32.065 

Cl 99 35.453 

Co 111 58.933195 

As 121 74.92160 

Se 116 78.96 

Br 114 79.904 

I 133 126.90447 

 473 
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