期刊论文详细信息
BioMedical Engineering OnLine
The concepts of muscle activity generation driven by upper limb kinematics
Research
Tobias Glasmachers1  Marie D. Schmidt2  Ioannis Iossifidis3 
[1] Faculty of Computer Science, Ruhr-University Bochum, Bochum, Germany;Faculty of Electrical Engineering and Information Technology, Ruhr-University Bochum, Bochum, Germany;Institute of Computer Science, University of Applied Science Ruhr West, Mülheim an der Ruhr, Germany;Institute of Computer Science, University of Applied Science Ruhr West, Mülheim an der Ruhr, Germany;
关键词: Electromyography (EMG);    Inertial measurement unit (IMU);    Neural networks;    Muscle activity;    Motion parameters;    Voluntary movement;    Artificial generated signal;    Generative model;    Transfer learning;   
DOI  :  10.1186/s12938-023-01116-9
 received in 2022-10-27, accepted in 2023-05-16,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundThe underlying motivation of this work is to demonstrate that artificial muscle activity of known and unknown motion can be generated based on motion parameters, such as angular position, acceleration, and velocity of each joint (or the end-effector instead), which are similarly represented in our brains. This model is motivated by the known motion planning process in the central nervous system. That process incorporates the current body state from sensory systems and previous experiences, which might be represented as pre-learned inverse dynamics that generate associated muscle activity.MethodsWe develop a novel approach utilizing recurrent neural networks that are able to predict muscle activity of the upper limbs associated with complex 3D human arm motions. Therefore, motion parameters such as joint angle, velocity, acceleration, hand position, and orientation, serve as input for the models. In addition, these models are trained on multiple subjects (n=5 including , 3 male in the age of 26±2 years) and thus can generalize across individuals. In particular, we distinguish between a general model that has been trained on several subjects, a subject-specific model, and a specific fine-tuned model using a transfer learning approach to adapt the model to a new subject. Estimators such as mean square error MSE, correlation coefficient r, and coefficient of determination R2 are used to evaluate the goodness of fit. We additionally assess performance by developing a new score called the zero-line score. The present approach was compared with multiple other architectures.ResultsThe presented approach predicts the muscle activity for previously through different subjects with remarkable high precision and generalizing nicely for new motions that have not been trained before. In an exhausting comparison, our recurrent network outperformed all other architectures. In addition, the high inter-subject variation of the recorded muscle activity was successfully handled using a transfer learning approach, resulting in a good fit for the muscle activity for a new subject.ConclusionsThe ability of this approach to efficiently predict muscle activity contributes to the fundamental understanding of motion control. Furthermore, this approach has great potential for use in rehabilitation contexts, both as a therapeutic approach and as an assistive device. The predicted muscle activity can be utilized to guide functional electrical stimulation, allowing specific muscles to be targeted and potentially improving overall rehabilitation outcomes.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202309072959093ZK.pdf 2877KB PDF download
MediaObjects/41408_2023_865_MOESM1_ESM.docx 342KB Other download
40517_2023_252_Article_IEq107.gif 1KB Image download
40517_2023_252_Article_IEq112.gif 1KB Image download
40517_2023_252_Article_IEq114.gif 1KB Image download
40517_2023_252_Article_IEq116.gif 1KB Image download
40517_2023_252_Article_IEq117.gif 1KB Image download
MediaObjects/41408_2023_850_MOESM1_ESM.docx 123KB Other download
40517_2023_252_Article_IEq121.gif 1KB Image download
40517_2023_252_Article_IEq122.gif 1KB Image download
Fig. 3 147KB Image download
Fig. 6 284KB Image download
MediaObjects/12951_2023_1944_MOESM4_ESM.tif 7814KB Other download
40517_2023_252_Article_IEq126.gif 1KB Image download
Fig. 4 564KB Image download
Fig. 1 914KB Image download
Fig. 1 500KB Image download
Fig. 1 1566KB Image download
Fig. 5 901KB Image download
Fig. 2 744KB Image download
Fig. 2 87KB Image download
Fig. 2 415KB Image download
12938_2023_1116_Article_IEq11.gif 1KB Image download
Fig. 6 304KB Image download
40517_2023_252_Article_IEq132.gif 1KB Image download
40517_2023_252_Article_IEq133.gif 1KB Image download
40517_2023_252_Article_IEq134.gif 1KB Image download
40517_2023_252_Article_IEq135.gif 1KB Image download
12302_2023_754_Article_IEq4.gif 1KB Image download
Fig. 2 518KB Image download
Fig. 1 16KB Image download
MediaObjects/12951_2023_1959_MOESM3_ESM.tif 995KB Other download
12938_2023_1116_Article_IEq21.gif 1KB Image download
Fig. 2 115KB Image download
1498KB Image download
13690_2023_1130_Article_IEq2.gif 1KB Image download
13690_2023_1130_Article_IEq4.gif 1KB Image download
13690_2023_1130_Article_IEq6.gif 1KB Image download
13690_2023_1130_Article_IEq7.gif 1KB Image download
13690_2023_1130_Article_IEq8.gif 1KB Image download
13690_2023_1130_Article_IEq9.gif 1KB Image download
13690_2023_1130_Article_IEq11.gif 1KB Image download
13690_2023_1130_Article_IEq12.gif 1KB Image download
13690_2023_1130_Article_IEq13.gif 1KB Image download
13690_2023_1130_Article_IEq14.gif 1KB Image download
13690_2023_1130_Article_IEq15.gif 1KB Image download
13690_2023_1130_Article_IEq16.gif 1KB Image download
13690_2023_1130_Article_IEq17.gif 1KB Image download
13690_2023_1130_Article_IEq18.gif 1KB Image download
13690_2023_1130_Article_IEq19.gif 1KB Image download
40517_2023_252_Article_IEq151.gif 1KB Image download
13690_2023_1130_Article_IEq20.gif 1KB Image download
Fig. 2 504KB Image download
13690_2023_1130_Article_IEq22.gif 1KB Image download
Fig. 2 35KB Image download
【 图 表 】

Fig. 2

13690_2023_1130_Article_IEq22.gif

Fig. 2

13690_2023_1130_Article_IEq20.gif

40517_2023_252_Article_IEq151.gif

13690_2023_1130_Article_IEq19.gif

13690_2023_1130_Article_IEq18.gif

13690_2023_1130_Article_IEq17.gif

13690_2023_1130_Article_IEq16.gif

13690_2023_1130_Article_IEq15.gif

13690_2023_1130_Article_IEq14.gif

13690_2023_1130_Article_IEq13.gif

13690_2023_1130_Article_IEq12.gif

13690_2023_1130_Article_IEq11.gif

13690_2023_1130_Article_IEq9.gif

13690_2023_1130_Article_IEq8.gif

13690_2023_1130_Article_IEq7.gif

13690_2023_1130_Article_IEq6.gif

13690_2023_1130_Article_IEq4.gif

13690_2023_1130_Article_IEq2.gif

Fig. 2

12938_2023_1116_Article_IEq21.gif

Fig. 1

Fig. 2

12302_2023_754_Article_IEq4.gif

40517_2023_252_Article_IEq135.gif

40517_2023_252_Article_IEq134.gif

40517_2023_252_Article_IEq133.gif

40517_2023_252_Article_IEq132.gif

Fig. 6

12938_2023_1116_Article_IEq11.gif

Fig. 2

Fig. 2

Fig. 2

Fig. 5

Fig. 1

Fig. 1

Fig. 1

Fig. 4

40517_2023_252_Article_IEq126.gif

Fig. 6

Fig. 3

40517_2023_252_Article_IEq122.gif

40517_2023_252_Article_IEq121.gif

40517_2023_252_Article_IEq117.gif

40517_2023_252_Article_IEq116.gif

40517_2023_252_Article_IEq114.gif

40517_2023_252_Article_IEq112.gif

40517_2023_252_Article_IEq107.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  文献评价指标  
  下载次数:112次 浏览次数:9次