| Journal of Biomedical Semantics | |
| Multiple sampling schemes and deep learning improve active learning performance in drug-drug interaction information retrieval analysis from the literature | |
| Research | |
| Lang Li1  Weixin Xie1  Kunjie Fan1  Shijun Zhang1  | |
| [1] Department of Biomedical Informatics, Ohio State University, 43210, Columbus, OH, USA; | |
| 关键词: Active learning; Deep learning; Drug-drug interaction; Information retrieval; Random negative sampling; Positive sampling; Similarity sampling; Uncertainty sampling; | |
| DOI : 10.1186/s13326-023-00287-7 | |
| received in 2022-03-09, accepted in 2023-04-29, 发布年份 2023 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundDrug-drug interaction (DDI) information retrieval (IR) is an important natural language process (NLP) task from the PubMed literature. For the first time, active learning (AL) is studied in DDI IR analysis. DDI IR analysis from PubMed abstracts faces the challenges of relatively small positive DDI samples among overwhelmingly large negative samples. Random negative sampling and positive sampling are purposely designed to improve the efficiency of AL analysis. The consistency of random negative sampling and positive sampling is shown in the paper.ResultsPubMed abstracts are divided into two pools. Screened pool contains all abstracts that pass the DDI keywords query in PubMed, while unscreened pool includes all the other abstracts. At a prespecified recall rate of 0.95, DDI IR analysis precision is evaluated and compared. In screened pool IR analysis using supporting vector machine (SVM), similarity sampling plus uncertainty sampling improves the precision over uncertainty sampling, from 0.89 to 0.92 respectively. In the unscreened pool IR analysis, the integrated random negative sampling, positive sampling, and similarity sampling improve the precision over uncertainty sampling along, from 0.72 to 0.81 respectively. When we change the SVM to a deep learning method, all sampling schemes consistently improve DDI AL analysis in both screened pool and unscreened pool. Deep learning has significant improvement of precision over SVM, 0.96 vs. 0.92 in screened pool, and 0.90 vs. 0.81 in the unscreened pool, respectively.ConclusionsBy integrating various sampling schemes and deep learning algorithms into AL, the DDI IR analysis from literature is significantly improved. The random negative sampling and positive sampling are highly effective methods in improving AL analysis where the positive and negative samples are extremely imbalanced.
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202308158624743ZK.pdf | 3395KB | ||
| 40517_2023_256_Article_IEq11.gif | 1KB | Image | |
| 40517_2023_258_Article_IEq114.gif | 1KB | Image | |
| 40517_2023_258_Article_IEq122.gif | 1KB | Image | |
| 40517_2023_258_Article_IEq133.gif | 1KB | Image | |
| MediaObjects/40249_2023_1063_MOESM8_ESM.docx | 62KB | Other | |
| 40517_2023_256_Article_IEq33.gif | 1KB | Image | |
| Fig. 1 | 229KB | Image | |
| 40517_2023_256_Article_IEq34.gif | 1KB | Image | |
| MediaObjects/41021_2023_273_MOESM3_ESM.docx | 42KB | Other | |
| 40517_2023_256_Article_IEq35.gif | 1KB | Image | |
| 12936_2023_4577_Article_IEq66.gif | 1KB | Image | |
| 40517_2023_256_Article_IEq36.gif | 1KB | Image | |
| MediaObjects/12888_2023_4818_MOESM4_ESM.pdf | 4381KB | ||
| MediaObjects/12888_2023_4780_MOESM2_ESM.docx | 19KB | Other | |
| 603KB | Image | ||
| 40517_2023_256_Article_IEq38.gif | 1KB | Image | |
| Fig. 2 | 295KB | Image | |
| Fig. 1 | 2661KB | Image | |
| Fig. 4 | 961KB | Image | |
| MediaObjects/12302_2023_737_MOESM1_ESM.docx | 12190KB | Other | |
| MediaObjects/12888_2023_4885_MOESM2_ESM.doc | 48KB | Other | |
| Fig. 6 | 218KB | Image | |
| Fig. 2 | 192KB | Image | |
| Fig. 7 | 183KB | Image | |
| MediaObjects/12974_2023_2804_MOESM3_ESM.tif | 12261KB | Other | |
| Fig. 3 | 462KB | Image | |
| Fig. 1 | 395KB | Image | |
| Fig. 5 | 262KB | Image | |
| Fig. 1 | 113KB | Image | |
| Fig. 2 | 612KB | Image | |
| Fig. 6 | 744KB | Image | |
| MediaObjects/12888_2023_4793_MOESM1_ESM.pdf | 183KB | ||
| Fig. 2 | 237KB | Image | |
| MediaObjects/12974_2023_2797_MOESM7_ESM.docx | 23KB | Other | |
| Fig. 3 | 50KB | Image | |
| 40517_2023_256_Article_IEq47.gif | 1KB | Image | |
| Fig. 1 | 86KB | Image | |
| Fig. 1 | 252KB | Image | |
| 12888_2023_4880_Article_IEq1.gif | 1KB | Image | |
| MediaObjects/41408_2023_830_MOESM1_ESM.pdf | 1496KB | ||
| MediaObjects/12888_2023_4880_MOESM1_ESM.docx | 22KB | Other | |
| Fig. 2 | 450KB | Image | |
| 40517_2023_256_Article_IEq51.gif | 1KB | Image | |
| MediaObjects/13750_2023_304_MOESM2_ESM.docx | 13KB | Other | |
| 40517_2023_256_Article_IEq52.gif | 1KB | Image | |
| Fig. 2 | 1329KB | Image | |
| 40517_2023_256_Article_IEq53.gif | 1KB | Image | |
| Fig. 2 | 104KB | Image | |
| Fig. 3 | 380KB | Image | |
| Fig. 3 | 286KB | Image | |
| 40517_2023_256_Article_IEq55.gif | 1KB | Image | |
| MediaObjects/13750_2023_304_MOESM6_ESM.xlsx | 80KB | Other | |
| Fig. 4 | 498KB | Image | |
| MediaObjects/13750_2023_304_MOESM7_ESM.docx | 26KB | Other | |
| MediaObjects/12888_2023_4818_MOESM5_ESM.pdf | 946KB | ||
| Fig. 3 | 974KB | Image |
【 图 表 】
Fig. 3
Fig. 4
40517_2023_256_Article_IEq55.gif
Fig. 3
Fig. 3
Fig. 2
40517_2023_256_Article_IEq53.gif
Fig. 2
40517_2023_256_Article_IEq52.gif
40517_2023_256_Article_IEq51.gif
Fig. 2
12888_2023_4880_Article_IEq1.gif
Fig. 1
Fig. 1
40517_2023_256_Article_IEq47.gif
Fig. 3
Fig. 2
Fig. 6
Fig. 2
Fig. 1
Fig. 5
Fig. 1
Fig. 3
Fig. 7
Fig. 2
Fig. 6
Fig. 4
Fig. 1
Fig. 2
40517_2023_256_Article_IEq38.gif
40517_2023_256_Article_IEq36.gif
12936_2023_4577_Article_IEq66.gif
40517_2023_256_Article_IEq35.gif
40517_2023_256_Article_IEq34.gif
Fig. 1
40517_2023_256_Article_IEq33.gif
40517_2023_258_Article_IEq133.gif
40517_2023_258_Article_IEq122.gif
40517_2023_258_Article_IEq114.gif
40517_2023_256_Article_IEq11.gif
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
PDF