期刊论文详细信息
Journal of Applied & Computational Mathematics
Refined Estimates on Conjectures of Woods and Minkowski-I
article
Kathuria L1  Raka M1 
[1] Centre for Advanced Study in Mathematics, Panjab University
关键词: Lattice;    Covering;    Non-homogeneous;    Product of linearforms;    Critical determinant;    Korkine and Zolotare reduction;    Hermite'sconstant;    Centre density;   
DOI  :  10.4172/2168-9679.1000209
来源: Hilaris Publisher
PDF
【 摘 要 】

Let ^ be a lattice in Rn reduced in the sense of Korkine and Zolotare having a basis of the form (A1, 0, 0, . . . , 0),(a2,1,A2, 0, . . . , 0), . . . , (an,1, an,2, . . . , an,n-1,An) where A1,A2, . . . ,An are all positive. A well known onjecture of Woodsin Geometry of Numbers asserts that if A1 A2…An=1 and Ai £ A1 for each i then any closed sphere in Rn of radiusn / 2 contains a point of ^. Woods' Conjecture is known to be true for n £ 9 . In this paper we obtain estimates onthe Conjecture of Woods for n=10; 11 and 12 improving the earlier best known results of Hans-Gill et al. These leadto an improvement, for these values of n, to the estimates on the long standing classical conjecture of Minkowski onthe product of n non-homogeneous linear forms.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202307140004259ZK.pdf 532KB PDF download
  文献评价指标  
  下载次数:12次 浏览次数:14次