学位论文详细信息
An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems
KAM theory;Hamiltonian;Lattice;Quasi-periodic breathers
Viveros Rogel, Jorge ; Mathematics
University:Georgia Institute of Technology
Department:Mathematics
关键词: KAM theory;    Hamiltonian;    Lattice;    Quasi-periodic breathers;   
Others  :  https://smartech.gatech.edu/bitstream/1853/19869/1/viveros_jorge_200712_phd.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

We prove the existence and linear stability of quasi-periodic breather solutions in a 1d Hamiltonian lattice of identical, weakly-coupled, anharmonic oscillators with general on-site potentials and under the effect of long-ranged interaction, via de KAM technique. We prove the persistence of finite-dimensional tori which correspond in the uncoupled limit to N arbitrary lattice sites initially excited. The frequencies of the invariant tori of the perturbed system are only slightly deformed from the frequencies of the unperturbed tori.

【 预 览 】
附件列表
Files Size Format View
An extension of KAM theory to quasi-periodic breather solutions in Hamiltonian lattice systems 712KB PDF download
  文献评价指标  
  下载次数:15次 浏览次数:5次