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SUMMARY

This thesis is concerned with the existence and linear stability of quasi-periodic solutions

of the breather type for a one-dimensional lattice system of weakly-coupled anharmonic

oscillators with interaction potential of the long-range type; namely, Hamiltonian systems

whose Hamiltonian function is of the following form,

H =
∑
n∈Z

(
p2

2
+ Vn(qn)) + ε

∑
n6=m

1
p
Cm,n(qm − qn)p ,

where p ∈ Z, p ≥ 3 and Cm,n = Cn,m = O(e−|m−n|); W =
∑

n 6=m
1
pCm,n(qm − qn)p is the

so-called interaction potential. The study of a variety of physical and biological systems

can be formulated in terms of a Hamiltonian system of the same type as the one above or

of couplings of these; for example, the dynamics of thin layers of adsorbed atoms (adatoms)

on crystal surfaces, the behavior of crystal lattices near a dislocation core (important in the

understanding of the elastic properties of solids), the existence of localized electric currents

in superconducting systems made out of Josephson-junction arrays, the generation and ma-

nipulation of localized excitations (intrinsic localized modes) in micromechanical cantilever

arrays and, more recently, the breaking of macromolecules such as in the denaturation of

the DNA molecule; to mention just a few.

In essence, all of the examples mentioned above are related to the mechanism of focus-

ing and transport of energy. Typically, breathers are time-periodic or time-quasiperiodic

solutions in extended Hamiltonian systems, which have the additional property of spatial

localization; i.e., the decay of the amplitude of oscillation is exponential, super-exponential

or other similar type of fast decay. This special class of solutions has been observed experi-

mentally, modeled numerically and its existence has been rigorously established for certain

continuous systems such as those modeled by PDEs of the wave, Schrödinger or beam types,

and in discrete lattice systems such as the ones that arise from the examples mentioned in
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the previous paragraph and which we will mention in more detail in chapter 3. Neverthe-

less, the existence of breathers in discrete systems is very different from their existence in

continuous systems; for example, in continuous systems breathers are rather elusive, non-

generic objects whereas in discrete systems they are more robust, in some sense, and their

occurrence is more common; moreover, it usually is the case that their existence and linear

stability can be simultaneously proved.

In this work we tackle the existence of breathers in Hamiltonian systems such as the one

whose Hamiltonian function we introduced at the begining, using the KAM methodology;

more precisely, we will consider an N -parametric family of real-analytic Hamiltonians of

the form

H = N + P ,

where N ∈ Z, N > 1, N = 〈ω(ξ), I〉 +
∑

n∈Z βwnw̄n, β > 0 is a constant independent

of the parameter ξ ∈ O ⊂ RN and P = P(θ, I, w, w̄, ξ) is the perturbation term whose

properties are inspired in and also generalize those of the perturbative interaction term,

W , described previously; furthermore, (θ, I, w, w̄) belong to a complex neighborhood of

TN × {0} × {0} × {0} ⊂ TN × RN × `1 × `1. We will prove that, provided that N and P

satisfy certain non-degeneracy and regularity conditions and the perturbation P is small

enough, there exists a family of Cantor sets Oγ ⊂ O, such that for each ξ ∈ Oγ and

θ ∈ TN , the quasi-periodic invariant torus Tξ = {ω(ξ)t + θ} × {0} × {0} × {0} of the

unperturbed system H = N , will persist as an invariant torus T γξ of the perturbed system

H = N +P, where T γξ ∼ Tξ and the motion on T γξ is quasi-periodic with frequencies ω̃ ∼ ω;

moreover, the normal coordinates wn decay exponentially in |n|, uniformly in time. The

precise formulation is made in Theorem B, ch. 4; we will sometimes refer to this theorem

as our abstract KAM theorem.

The proof of Theorem B is the core of the thesis and in it we describe how to treat

the combined problem of long-range interaction and normal frequencies with infinite multi-

plicities, which earlier results such as that in [108] (infinite multiplicities, nearest-neighbor

interaction) or analogous KAM methods for PDEs such as [66, 65, 80, 79, 101, 17] (finite

multiplicities) were not able to incorporate in the form we did here.
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CHAPTER I

INTRODUCTION

Coincidentally, the beginning of the second half of the twentieth century saw two works

whose impact in the field of dynamical systems was profound and long-lived.

The first of the two works we refer to above consists in the numerical study of a system

of a finite number of particles by Fermi, Pasta and Ulam (FPU) in Los Alamos in 1955

(cf. [41]). In their work those authors carried out a Fourier-component study of a one-

dimensional array of 64 particles with fixed ends, coupled by an anharmonic interaction,

over periods of time which are much longer compared to the characteristic periods of the

associated linear system. More precisely, if qn is the displacement of the nth particle from

its equilibrium position, the FPU system is Hamiltonian with a finite number of degrees of

freedom and Hamiltonian function of the form

H =
N∑
n=1

p2
n

2
+W({qn}Nn=1) ,

where N = 64 and W is an interaction potential of one of three categories,

(i-ii) cubic (p=3) or quartic (p=4): W =
∑N

n=1
1
p(wn+1 − wn)p,

(iii) broken-linear: W =
∑N

n=1(δ(qn+1 − qn)(qn+1 − qn)2 + c(qn)qn), where δ and c are

functions which depend on whether the quantities in parentheses are less than or greater

than certain predetermined fixed values.

The purpose of the FPU numerical study was that of investigating the long-term effect (in

the sense mentioned above) that nonlinear terms have on simple initial periodic solutions

associated to the linear system.

The second of the two works is by A. N. Kolmogorov (1954) (cf. [57], English transaltion

[58]) and is concerned with nearly-integrable Hamiltonian systems. In simple terms, Kol-

mogorov’s theorem states that if an integrable Hamiltonian function is non-degenerate and

sufficiently differentiable, then under small and differentiable enough perturbations, many

of its quasi-periodic orbits will persist as quasi-periodic orbits of the full perturbed system;
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moreover, such solutions live on a torus which they fill densely (cf. the “classical” KAM

theorem in the next chapter or [36] p. 90).

The results of FPU and of Kolmogorov, challenged the general belief that a system

injected with energy is to achieve its thermal equilibrium obeying the laws of heat diffusion,

as one would expect from the 2nd law of Thermodynamics or the ergodic hypothesis (cf.

[97]). In particular, the FPU experiment showed that it is possible for energy to be trapped

in a system for a long period of time and thus slowing down its thermalization, in an apparent

violation to the principle of equipartition of energy. More precisely, the calculations of

Fermi, Pasta and Ulam showed that, starting with a sinusoidal mode of the linear system,

instead of the energy being distributed equally over all modes in time (“thermalization”),

it is distributed primarily on a few modes which may exchange their energies in a regular

fashion.

As computers became more powerful and accessible, numerical studies gathered evi-

dence which pointed out that the process by which energy is focused within a system thus

preventing its relaxation is, in fact, very common. Under certain circumstances systems are

capable of focusing and transporting energy and the mechanisms by which this is possible

possess a relatively simple mathematical formulation.

Perhaps the two oldest examples of mathematical objects which reflect the property

of energy localization and transport are solitons and breathers, which first appeared as

special solutions of nonlinear wave equations such as KdV; we will elaborate more on these

type of solutions in chapter 3 where we provide explicit formulae for them in the cases of

the modified KdV and sine-Gordon equations. Solitons are traveling-wave solutions, they

propagate throughout the medium without altering their shape. In contrast, breathers can

be periodic or quasi-periodic in time and they may be anchored to a particular region in

space or they may translate as well. Both solitons and breathers have the property of spatial

localization, that is, they are expressed as highly localized disturbances in the medium.

Our work is concerned with solutions of the breather type in lattice systems; we will

sometimes refer to this scenario as the discrete case. For a lattice system we will understand

a one-dimensional array or alignment of oscillators (point masses) whose interactions with

2



the medium or substrate and with one another are modeled via an on-site potential (which

might be different for each oscillator) and a coupling, or simply interaction, potential;

respectively. More clearly, let qn denote the displacement of the nth oscillator from its

equilibrium position, then the equation that governs the motion of this oscillator is of the

following form,

q̈n + V ′n(qn) =
∑
k≥1

(W ′(qn+k − qn)−W ′(qn − qn−k)) ,

where Vn is the on-site potential that represents the interaction between the nth oscillator

and the substrate and W is the interaction potential function that models how oscillators

interact with one another (W ′(x) = d
dxW(x)). The system of all equations of motion is

Hamiltonian with Hamiltonian function given by

H =
∑
n∈Z

(
p2
n

2
+ Vn(qn)) +

∑
m 6=n
W(qm − qn) . (1.0.1)

In this setting, breathers (also called discrete breathers to make the distinction with their

homologous solutions in the PDE setting –sometimes called the continuous case) are un-

derstood as time periodic or time quasi-periodic solutions whose amplitudes |qn| decay at

an exponential or inverse-power rate as |n| → ∞. The existence of this type of solutions

is very well documented in numerical models in the physics literature (cf. [23, 81] and

references therein). However, rigorous analytic proofs of their existence were not produced

prior to the work of MacKay and Aubry (1994) [70]. Those authors used continuation

methods from anti-integrability (or rather, anti-continuity) theory to prove the persistence

of a one-lattice excitation mode when the interaction term W in (1.0.1) is “switched on”,

i.e., whenW = εW and ε > 0 is constant1. We observe that when ε = 0, under appropriate

convexity properties of the on-site potentials, the system decouples and becomes integrable.

The anti-continuity method of MacKay and Aubry is not able to handle more than two-

excited sites at a time; however, these same authors suggested in their seminal paper that,

by combining ideas from anti-integrability and KAM theories, it should be possible to prove

1the interaction potential that they considered, however, is of the nearest-neighbor type (cf. chapter 3),
not of the long-range type as in (1.0.1)
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the more general case of persistence of an arbitrary number of excited sites, a result which

was strongly supported by numerical studies.

At the time of the publication of [70], the first works extending KAM theory to infinite-

dimensional systems had already been in circulation for ten years. The development of

KAM theory in infinite dimensions was started simultaneously by Vittot and Bellissard [100]

(1985) on lattice systems, and by Frölich, Spencer and Wayne [43] (1986). Moreover, it was

during the 1990’s that the development of KAM theory in infinite dimensions experienced

substantial progress in the works of (in alphabetical order) Bourgain, Chierchia, Craig,

Kuksin, Pöschel, You and Wayne (cf. [59, 60, 61, 66, 33, 62, 101, 79, 17, 65, 80, 63, 28], see

also [64], ch. 8).

In order to understand the main contribution of this thesis let us here briefly mention

some results which we will come back to again later on in here and in more detail in chapter

3. The first KAM proof on existence of discrete breathers in lattice systems is due to Yuan

[108] (2002) who considered a Hamiltonian system like (1.0.1) with Vn(x) = V (x) for all

n, such that V (0) = V ′(0) = 0, V ′′(0) = β2, β > 0 and W(qm − qn) = εδm,nW (qm − qn),

where δm,n = 1 if |m − n| = 1 and zero otherwise (this type of interaction potential is the

so-called nearest-neighbor type); furthermore, W (x) = O(|x|3). The Hamiltonian function

thus considered is

H =
∑
n∈Z

(
1
2
q2
n + V (qn) + εW (qn+1 − qn)) . (1.0.2)

By selecting a finite number of lattice sites J = {n1, . . . , nN}, N > 1, one can write the

Hamiltonian above in normal form,

H = 〈ω(ξ), I〉+
∑
n∈Z1

1
2
βwnw̄n + εP , (1.0.3)

where P is a higher-order perturbative term and Z1 = Z \ J (cf. [108] p. 67, or chapter 4

of this work). ξ plays the role of an N -parameter and β is the so-called normal frequency,

the same for every n. Writing H in the normal form above immediately implies that

previous KAM results derived from a PDE setting are not applicable in this case because

such results require normal frequencies of finite multiplicity or satisfying certain asymptotic

spectral conditions (cf. [108], or [64] p. 134). In the above cited work Yuan derived a

4



KAM theorem for (1.0.3) to treat the infinite-multiplicity case with short-range interaction,

by which he established the existence of quasi-periodic solutions of the breather type. We

remark at this point that the proof of Yuan’s KAM theorem relies crucially on the fact

that the Hamiltonian under consideration is of the short-range type. The main result in

this thesis, Theorem B in chapter 4, consists in a KAM theorem inspired in a Hamiltonian

system similar to (1.0.2) but with a long-ranged interaction potential; more precisely, in

Theorem A of chapter 4, we consider a Hamiltonian with an interaction potential of the

form

ε
∑
m 6=n

W (qm − qn) ,

where W (x) = O(|x|p) and p ≥ 3. We will show that, after writing the Hamiltonian of

Theorem A in normal form, one can see clearly that neither the KAM results from PDEs,

nor the KAM theorem in [108] are applicable in this case to establish the existence of

quasi-periodic motions because, in one hand, the spectrum of the associated linear problem

is degenerate (only one frequency and thus it suffers from infinite muiltiplicity) and in

the other hand, the proof of the analogous KAM theorem in [108] cannot be adapted to

prove our abstract KAM theorem, Theorem B, because Yuan’s proof makes strong use

of the short-range property of his interaction potential. We will demonstrate that one

can nevertheless abstract the properties of our physical Hamiltonian in Theorem A and

formulate a more general type of Hamiltonian of the long-range type which, in spite of

having one single normal frequency and thus exhibiting infinite multiplicity, it is still fit

for us to apply the KAM methodology to prove the existence of quasi-periodic solutions of

the breather type; provided that the perturbation term in the Hamiltonian satisfies certain

growth conditions which are again inspired in the properties of the physical Hamiltonian

in Theorem A. We will also motivate the study of the Hamiltonian in Theorem A by

showing that it can be interpreted as a higher-order term in the expansion of a physical

interaction potential from quantum physics; this interpretation provides another way of

looking at systems of the Frenkel-Kontorova (FK) type or their extensions. Regarding the

interpretation of interaction potentials, it usually is the case (although not always) that

exact existence results of breathers in lattice systems use a FK type of interaction and leave
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out an explanation as of why they are interested in this type of potential, perhaps guarded

behind the well-known success of this model in explaining a large number of phenomena

(cf. chapter 3). There is, however, a number of interaction potentials of physical origin (cf.

[85]) for which rigorous existence results of breather solutions in associated lattice systems

has not been done.

Chapters 2 and 3 are introductory in nature. In chapter 2 we introduce some of the

basic mathematical formalism that will appesr in chapter 4 and discuss the classical results

of KAM theory in finite dimensions, particularly so those regarding the persistence of lower-

dimensional tori because they constitute the natural finite-dimensional framework in which

to understand the analogous persistence problem in infinite dimensions and which amounts

to the existence of quasi-periodic solutions, of which breathers are but a particular class.

We start chapter 3 by introducing the notion of breathers following a rather chronological

order, namely, we discuss the existence of intrinsic localized modes (ILMs) in PDEs such as

Korteweg-de Vries (KdV), modified Korteweg-de Vries (mKdV) and sine-Gordon (sG), with

emphasis on solitons and time-periodic breathers. The existence of solitons and breathers in

PDE systems was established rigorously via the inverse scattering method in the early 1970’s

although such types of solutions had already been identified earlier (cf. [1, 2] and references

therein). However, with the exception of the sG equation, breather solutions in PDEs

appear as rather non-robust objects in the sense of the results in [91, 94, 37, 13, 14]; this

is to contrast with the existence of this same type of solutions in lattice systems, including

those systems which originate as spatial discretizations (in one of two ways mentioned in

chapter 3) of KdV, mKdV and sG equations. Indeed, the so-called continuous (PDE) and

discrete (lattice) systems are very different from the dynamics point of view, in our work

we will not be concerned with the continuous case and thus we will not try to elaborate on

it but on the discrete case, in which it is well-known that the combination of discreteness

and non-linearity are the main ingredients responsible for the ability of a system to support

breathers (cf. [70, 69, 6]).

Lattice systems arise naturally as mathematical models in physics and in biology; to

illustrate this point we have included in chapter 3 a few examples used in the study of
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the dynamics of crystal lattices, electric circuits, and in mechanical and biological sys-

tems. Following our examples, we present a discussion of exact existence results of quasi-

periodic breathers in Hamiltonian lattice systems with comments on the methods of proof

(cf. [70, 10, 9, 108, 95]). Our choice of results is three-fold. First, we aim at provid-

ing a brief account of (selected) methods used in proving the existence of breathers in

lattice systems; namely, anti-continuity (implicit-function methods; [70]), general normal-

form theorems for abstract Hamiltonian systems in Banach spaces ([10, 9]), KAM ([108])

and finite-dimensional center-manifold reduction methods ([95, 54]). These methods are not

exhaustive, for example, variational (minmax with constraint) methods have been left out.

Even though variational methods are capable of obtaining solutions of physical interest and

are suitable in the absence of parameters (such as those with weak coupling like [70, 108]),

generally, however, with this type of method one can only establish the existence of sin-

gle discrete breathers at the cost of rather complex proofs (cf. [6] and references therein).

Second, even though we possess a precise mathematical definition of breathers, we believe

that the list of works above also help in providing us with a dynamical characterization

of such objects. Consider for instance the center-manifold reduction approach in [54, 95]

which renders travelling breathers as homoclinic orbits to lower-dimensional tori; a notion

one may develop the intuition for, after reading [108] or chapter 4 of this work (which es-

tablish the existence of (“true”) quasi-periodic breathers) and then comparing the type of

solutions found against those other, sometimes called, “breather-like”, which start as true

breathers but then break up and disappear via some type of phonon-radiation mechanism

and which are more commonly found in the physics literature (e.g., cf. ch. 4 in [21] and

references therein). Third and last, we hope that our selection of existence results will help

in convincing the reader that our Theorem A in chapter 4 is the next (after [108]) natural,

and perhaps we may also say necessary, step to take in the developing theory of breathers;

namely, that of demonstrating the existence of this type of solutions in infinite-dimensional

lattice systems with a long-range interaction term of the third order. To prove Theorem A,

an abstract KAM theorem was developed which may be applied in both, lattice and PDE

settings as well, making it an interesting result in its own right.
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CHAPTER II

BRIEF REVIEW OF KAM THEORY IN FINITE DIMENSIONS

Chapter summary

Even though the main result of this work (cf. Theorem B, sec. 4.2) is concerned with

KAM theory in infinite dimensions, its main ideas and method of proof can be better

understood by looking into the case of the persistence of certain lower-dimensional

tori in nearly integrable finite-dimensional Hamiltonian systems, which is in fact the

scenario from which infinite-dimensional KAM theory drew its insight. The purpose of

this chapter is that of briefly reviewing KAM theory in finite dimensions, in particular,

later work on the perturbation of lower-dimensional tori. To this end, we will first

introduce the basics of the Hamiltonian formalism. The type of reader interested in

dynamical systems will find the exposition very familiar while the well-versed type may

continue to the next chapter.

2.1 Hamiltonian systems: formalism and examples

Hamiltonian mechanics is just one among three approaches or models used to describe

mechanical systems, the other two being the Newtonian and the Lagrangian, they all differ-

entiate from one another depending on the principles or laws of motion that they observe.

The Hamiltonian approach to mechanics requires the system under study to be endowed

with a mathematical structure that we will briefly define in the next few pages.

Let us start by quickly recalling the derivation of Hamilton’s equations from Lagrange’s

equations (cf. [40, 12]). In Lagrangian mechanics one assumes that the configuration or state

of a physical system at time t is determined by a set of n coordinates, q1(t), . . . , qn(t), called

the position variables at time t; we will assume that these coordinates are independent and

complete; i.e., no one coordinate depends on the others and they fully determine the state

of the system. The set of all possible configurations of the system is an n-dimensional (real)
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manifold called the configuration space, whose local coordinates are the position variables.

The evolution in time of the system is given by a curve γ : t 7→ (q1(t), . . . , qn(t)), with

prescribed initial conditions qi(t0) = q0
i , i = 1, . . . , n. In Lagrangian mechanics the curve γ

that describes the evolution of a system is obtained via the principle of least action; i.e., γ

is such that it minimizes the path (also action) integral,

γ = argmin
∫ t1

t0

L(q, q̇, t) dt ,

where q = (q1, . . . , qn). L is the so-called Lagrange function and is given by the difference

between the total kinetic and potential energies of the system; we will assume that L is

convex in q̇ = (q̇1, . . . , q̇n). The minimization above is carried over some suitable space of

functions so that the variational problem is well-defined. The condition for an extremum is

thus given by the Euler-Lagrange equations,

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 , i = 1, . . . , n .

The above system is equivalent to a 2n-dimensional system of 1st-order ODEs; a point

in phase space would have coordinates (q, q̇). In the Hamiltonian formulation we use the

position q and generalized momentum p = (p1, . . . , pn) as our local coordinates, where the

momentum is defined as

pi =
∂L

∂q̇i
, i = 1, . . . , n ;

on the other hand, the Lagrangian is replaced by the Hamiltonian function, given by

H(p, q, t) = pq̇ − L(q, q̇, t) ,

where p is as defined above, then upon writing down the total differential of H and using

the definition of the generalized momentum one can easily see that Lagrange’s equations

yield to Hamilton’s equations

q̇ =
∂H

∂p
, ṗ = −∂H

∂q
, (2.1.1)

together with ∂H/∂t = ∂L/∂t. When H is independent of t, Hamilton’s equations become

a 2n-dimensional closed system of first-order equations. It turns out that, in the new
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variables, the Hamiltonian becomes the sum of the kinetic, T , and potential V energies,

i.e.,

H = T + V .

The above is a rather simplistic and quick approach to deriving Hamilton’s equations.

We now turn to explaining some of the geometric notation that accompanies Hamiltonian

dynamics, for which we will need some abstraction. Associated to Hamilton’s equations

there is a 2n-dimensional smooth manifold, M , where n stands for the number of degrees

of freedom of the system. On M we define a symplectic structure as a symplectic, non-

degenerate, closed form, ω2; i.e., for any given z ∈M , let TzM denote the tangent space at

z, then

ω2 : TzM × TzM → R

is bilinear, antisymmetric (ω2(u, v) = −ω2(v, u) for all u, v ∈ TzM), if ω2(u, v) = 0 for any

v ∈ TzM then u = 0, and dω2 ≡ 0. The pair (M,ω2) is called a symplectic manifold.

A theorem by G. Darboux (cf. [4] p. 230) states that in a neighborhood of any point

z ∈ M one can choose appropriate local coordinates, say z = (p1, . . . , pn, q1, . . . , qn), such

that ω2 has the standard or canonical form

ω2 =
n∑
i=1

dpi ∧ dqi ;

these coordinates are called symplectic or canonical.

The property of ω2 of being non-degenerate allows us to identify vector fields and one-

forms. This idea is central to the Hamiltonian formalism and thus we will elaborate more on

it. Let ξ ∈ TzM , the map ξ 7→ ω2(·, ξ) from TzM to T ∗zM is clearly linear; moreover, if ω2 is

non-degenerate, this map invertible and in fact an isomorphism. The previous observation

motivates the following definition: let TM = ∪{TzM : z ∈ M} denote the tangent bundle

of M , a map X : M → TM is called a vector field on M ; the inner product of a vector field

X and a non-degenerate two-form ω2, is a 1-form, iXω2, defined by

iXω
2(·) := ω2(X, ·) .

Now let H : M → R be a smooth function defined on M , smoothness in this case refers to

the local coordinates on M , dH is a covector field on M , dH ∈ T ∗M , which we denote by
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dH =
∑n

i=1(∂H∂qi dqi + ∂H
∂pi
dpi). We say that a vector field XH : M → TM is a Hamiltonian

vector field with the energy function H, if and only if

i(XH)ω2 = dH , (2.1.2)

and (M,ω2, XH) is called a Hamiltonian system. In particular, let us recall Hamilton’s

equations (2.1.1), in this case XH =
∑n

i=1(∂H∂qi
∂
∂qi
− ∂H

∂pi
∂
∂pi

) and one can show (cf. [12] p.

6) that Hamilton’s equations are equivalent to (2.1.2); more precisely, if J : T ∗M → TM

denotes the inverse of inner product defined by (2.1.2), then

ż = J dH .

Another important geometric structure in Hamiltonian mechanics is the following. Suppose

that F and G are smooth functions on M , the Poisson bracket of F and G is defined as

{F,G} := ω2(J dG,J dF ) .

It is not difficult to show that the Poisson bracket is bilinear, skew-symmetric and that it

satisfies the following properties:

(i) Leibniz rule: {F1F2, G} = F1{F2, G}+ F2{F1, G}.

(ii) Jacobi identity: {{H,F}, G}+ {{F,G}, H}+ {{G,H}, F} = 0.

(iii) Non-degenerate: if z is not a critical point of F , then there exists a smooth function G

such that {F,G}(z) 6= 0.

The value of the Poisson bracket may also be calculated by {F,G} = dF (J dG), that

is, as the value of the covector dF on the vector J dG; in particular, the derivative of a

function F in the direction of the Hamiltonian vector field J dH is Ḟ = J dH;

In symplectic local coordinates the notions defined above adopt a simple form; for

example, Hamilton’s equations are expressed in vector from as ż = J∇H where J ∈ R2n×2n

is the unit symplectic matrix and is given by blocks by J11 = J22 = 0, J12 = I = −J21,

where 0 and I are the zero and identity matrices in Rn×n, respectively. Furthermore,
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{F,G} = (∇F )>J∇G. Also, Hamilton’s equations may be conveniently written as,

q̇i = {pi, H} , pi = {qi, H} , i = 1, . . . , n .

Examples of Hamiltonian systems pervade the natural sciences field, below we just mention

three of them.

(A) System of coupled pendula

Consider a system of three rigid pendula hanging from a wire and whose planes of oscilla-

tion are parallel to each other. Assume that their masses are the same and that they are

coupled by identical torsional springs whose effect is that of adding a torque that depends

linearly on the phase difference between neighbors (cf. figure 1)

Figure 1: A system of three identical rigid pendula linearly coupled by torsional springs.

Let θi denote the phase of the ith pendulum, that is, its deviation from the vertical, then,

in appropriate dimensionless variables, the system of equations for the individual torques is

θ̈1 + sin θ1 = κ(θ2 − θ1) ,

θ̈2 + sin θ2 = κ(θ3 − θ2)− κ(θ2 − θ1) ,

θ̈3 + sin θ3 = −κ(θ3 − θ2) .

(2.1.3)

The system above is Hamiltonian, with conjugate variables pi = θ̇i, qi = θi, i = 1, 2, 3 and

Hamiltonian

H =
1
2

(p2
1+p2

2+p2
3)+(1−cos q1)+(1−cos q2)+(1−cos q3)+

κ

2
((q3−q2)2+(q2−q1)2) . (2.1.4)
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Moreover, the Poisson bracket between two functions F and G is defined by {F,G} =

(∇F )>J∇G =
∑3

i=1(FqiGpi − FpiGqi), where J is the canonical symplectic identity, thus

ṗ = {H, p} and q̇ = {H, q}, or if z = (p, q) then ż = J∇H(z).

Observe that in the limit κ = 0 the system (2.1.4) decouples to that of a system of three

identical nonlinear oscillators,

q̈i + sin qi = 0 , i = 1, 2, 3 ; (2.1.5)

with Hamiltonians Hi = 1
2p

2
i + (1 − cos qi); the level sets Hi = h0

i give us the phase

portraits for each oscillator. Let us quickly use this happenstance to illustrate the concept

of integrability, which we will define more formally in the next section. Solving for pi in the

uncoupled system Hi we obtain pi = d
dtqi = (2(h0

i − (1− cos qi)))
1
2 , which yields

t− t0 =
∫ qi

q0
i

dq√
2(h0

i − (1− cos q))
,

where q0
i = qi(0). The integration procedure above is called quadrature, so one says that

one has solved the system of one oscillator up to quadrature; however, the integral above

cannot be solved explicitly and thus having an integral representation of the solution can

prove not to be very useful; nevertheless, as we will see in the next section, knowing whether

one can“integrate” the system is synonym to “simple dynamics” in an appropriate set of

variables –think for example of the harmonic oscillator ẍ+ a2x = 0, of which the (2.1.5) is

but a higher-order perturbation. In the trivial case of the harmonic oscillator it is possible

to define polar coordinates such that the first-order Hamiltonian system translates to ṙ = 0

and θ̇ = −a (cf. [74] p. 6)

(B) The N-body problem of celestial mechanics

Perhaps the Hamiltonian system par excellence, the N -body problem in celestial mechanics

consists in N point masses in a Newtonian reference frame, R3, interacting with one another

via their mutual gravitational forces only. If mi and qi = (xi, yi, zi)> stand for the mass and

position vector, respectively, of the ith mass, then the system of equations that describe
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the motion of the N particles is

miq̈i =
∑

1≤j≤N
j 6=i

Gmimj
qi − qj

‖qi − qj‖3
=

∂U

∂qi
, i = 1, . . . , N ,

where G is the universal gravitational constant and U is the gravitational potential defined

as

U =
∑

1≤i<j≤N

Gmimj

‖qi − qj‖
.

If we define the block-diagonal matrix Mii = miI3, where I3 is the 3×3 identity matrix, and

the 3N -dimensional vector q> = (q1
>, . . . , qN

>), then we can write the second-order system

of equations compactly as M q̈ = −∂U/∂q. This system is Hamiltonian with conjugate

variables given by the positions q and momenta p> = (m1ẋi
>, . . . ,mN ẋN

>) and Hamiltonian

H =
N∑
i=1

‖pi‖2

2mi
− U ,

thus

ṗi = {pi, H} , q̇i = {qi, H} ,

where J is the standard 6N × 6N symplectic identity, the Poisson bracket is in its standard

form F (q, p) and G(q, p) by {F,G} = (∇F )>J∇G; alternatively, if z = (p, q) then

ż = J∇H .

2.2 Integrability and action-angle variables

Once the description of a system is cast in terms of a Hamiltonian system of equations,

then there is the issue of “solving” these equations. But what do we mean by solving when,

for instance, even the simple system of one nonlinear oscillator mentioned in example A

of the previous section cannot be solved so as to obtain an explicit expression in terms of

the time variable? Moreover, not being able to obtain explicit solutions does not mean

that one cannot understand the system’s dynamics; once again, recall the case of the single

nonlinear oscillator where phase-space curves could be identified with the level curves of

the Hamiltonian function –but then again there is the issue of high-dimensional phase

spaces, etc. In Hamiltonian mechanics, the concept of “solvability” is replaced by that of

“integrability”; this is the subject of this section.
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The setting so far discussed is that of autonomous systems, i.e., the Hamiltonian does

not depend explicitly of the time variable, this will be the case of this work and therefore,

we will not discuss the more general case of time-dependent Hamiltonians. Associated to

an autonomous Hamiltonian system of equations there are always conserved quantities, the

Hamiltonian function being one of them (although it may be the only one, in mechanics it

usually is the case that quantities such as the linear or angular momenta are preserved too,

this is the case in the N -body problem of example B). We say that a function F (p, q) is a

conserved quantity, if its derivative in the direction of the Hamiltonian vector field is zero,

i.e., if

Ḟ = {F,H} = 0 ,

conserved quantities are also called first integrals. Loosely speaking, the more first integrals

the easier the description of a system, as phase space (solution) curves will live in the

intersection of the level sets of their first integrals. In Hamiltonian systems, for each first

integral found one can effectively reduce the number of degrees of freedom by one, provided

certain conditions are satisfied, we will discuss below.

We say that a Hamiltonian system (in general, any first-order system of ODEs) can

be integrated by quadratures if its solutions can be found by a finite number of algebraic

operations which include the inversion of functions, and by calculating integrals of known

functions.

Essential to the idea of integrability by quadratures is the next definition. Assume that

H is a Hamiltonian function that is defined on R2n and that z = (q1, . . . , qn, p1, . . . , pn) are

(global) symplectic coordinates. Let F1, . . . Fk be smooth functions of z and define a level

set of these functions as follows, let f = (f1, . . . , fn) then

Mf = {z : Fi(z) = fi , i = 1, . . . n} . (2.2.1)

We say that these functions are independent on Mf if their 1-forms dFi are linearly inde-

pendent at each point of Mf . We say that these functions are in involution if and only if

all their Poisson-bracket pairs vanish identically; i.e., if and only if

{Fi, Fj} ≡ 0 , i, j = 1, . . . , k .
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Liouville’s theorem states that if F1, . . . , Fn are independent on Mf and in involution,

then Mf is a smooth manifold invariant under the phase flow with Hamiltonian H = F1.

Moreover, if Mf is compact and connected then it is diffeomorphic to an n-dimensional torus

Tn = {(φ1, . . . , φn) mod2π} and the phase flow associated to the Hamiltonian H determines

a quasi-periodic motion on Mf ; i.e., φ̇i = ωi(f), i = 1, . . . , n; furthermore, Hamilton’s

equations, (ṗ, q̇) = (−Hq, Hp), can be integrated by quadratures (cf. [4] p. 272 or [74],

p. 38). If in addition, the frequencies ω1(f), . . . , ωn(f) rationally independent, then we say

that the torus is nonresonant, on such a torus every phase trajectory is everywhere dense (cf.

[5] p. 111). If Mf is not compact, then every one of its components is diffeomorphic to Tk×

Rn−k for some positive integer k and it is possible to find coordinates (φ1, . . . , φk)mod 2π,

y1, . . . , yn−k on which Hamilton’s equations ż = {z, Fj} take the form φ̇i = ωij and ẏl = clj

(cf. [5] p. 110), this simple way of writing Hamilton’s equations is discussed next.

Sometimes Hamilton’s equations are not written in conjugate variables that facilitate

their study; oftentimes it is desirable to find coordinates which will serve that pupose. But

we are not interested in just any set of coordinates which will make the description of the

dynamics simpler, we are interested in those which, in addition, preserve the symplectic

structure. Suppose that on a symplectic manifold M it is possible to define two sets of local

coordinates, (p, q) and (y, x); the transformation that maps one set of coordinates into the

other, g : (p, q) 7→ (y, x), is called canonical if and only if there exists a smooth function F

such that

dF (p, q) = ydx− pdq ; (2.2.2)

F is called primitive function of the transformation. Observe that ω2
p,q = d(pdq) = d(ydx−

dF ) = d(ydx) = ω2
y,x thus, indeed, a canonical transformation preserves the symplectic

structure. A necessary an sufficient condition for a transformation to be canonical is that

if Γ is the Jacobian matrix of the transformation g, then

Γ∗JΓ = J

(J is the canonical symplectic matrix), a matrix that satisfies this condition is called sym-

plectic, thus a transformation is canonical if and only if its Jacobian is symplectic. A

16



canonical transformation will preserve the canonical form of Hamilton’s equations; in fact,

if G is a smooth function of p and q, then

Ġy,x = {G,H}y,x = {G,H}p,q = Ġp,q ,

where the subindex indicates with respect to what coordinates the quantities are being

written. Lastly, we mention that condition (2.2.2) is sometimes written as

g∗ω2 = ω2

which says that the pull-back of ω2 by g is again ω2; that is again the preservation of the

2-form. The procedure by which one can “generate” canonical transformations is quite

standard and we will not include it here (cf. [4] p. 258 or [5] p. 22).

Let us go back now to the case of a 2n-symplectic manifold (M,ω2) that has n inde-

pendent first integrals in involution, F1, . . . , Fn. Now let Mf be as in (2.2.1) and assume

that this invariant manifold is compact, then: (1) there is a small neighborhood of Mf in

M which is diffeomorphic to D × Tn, where D is a small domain in Rn and (2) on D × Tn

there exist symplectic coordinates I ∈ D and φ ∈ Tn, in which the first integrals become

functions of I only; in particular, H = H(I); moreover, ω2 =
∑n

i=1 dIi∧dφi and Hamilton’s

equations turn into

İ = 0 φ̇ = ω(I) ,

the coordinates defined above are called action-angle variables; I is the so-called action

variable which “labels” the tori. The construction of the action-angle variables is again

standard (cf. [4] p. 282 and [5] p. 116); for example, if γ1, . . . , γn are a basis for the

one-dimensional cycles on the Mf (i.e., φi increases by 2π by going once around γi, while

all the increase in all the other coordinates is zero) one can show that

Ii(f) =
1

2π

∮
γi

p dq .

2.3 The classical KAM theorem

Among the most influential papers in dynamical systems because of the amount of funda-

mental work that originated from it is [57, 58], due to A. N. Kolmogorov, published over half
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a century ago. Since then, the work of Kolmogorov has been largely refined and extended

by many authors. The “classical” KAM theorem we include below is due to Kolmogorov

[57], Arnol’d [3] and Moser [75].

Let us consider a Hamiltonian function of the form

H(I, φ, ε) = H0(I) + εH1(I, ϕ, ε) , (2.3.1)

and assume for the moment that H is analytic. When ε = 0, H = H0(I), the Hamiltonian

system is completely integrable; the phase space is foliated by invariant tori I = constant

and on each torus the motion is quasi-periodic with frequency

ω0(I) =
∂H0

∂I
;

moreover, each nonresonant torus1 is densely filled by every one of its phase trajectories

while the remaining resonant tori are foliated by lower-dimensional tori.

The unperturbed Hamiltonian system, H = H0(I), is said to be nondegenerate if and

only if its frequencies are functionally independent; i.e., if and only if there exists Ω ⊂ Rn

such that

det
(
∂ω0

∂I

)
= det

(
∂2H0

∂I2

)
6= 0 , ∀ I ∈ Ω . (2.3.2)

It turns out that, in nondegenerate integrable Hamiltonian systems, the set of all nonreso-

nant tori is a full-measure dense set, thus the set of all resonant tori will have zero measure,

however, it also is dense.

The classical KAM theorem states the following,

In the case of the Hamiltonian (2.3.1), assume (2.3.2), then there exists a family of Cantor

sets Ωε ⊂ Ω with |Ω/Ωε| → 0 as ε → 0, such that for every I ∈ Ωε, the unperturbed

torus T(I) persists, giving rise to a slightly deformed, analytic, quasi-periodic, invariant

torus Tε(I) of the full perturbed system. Moreover, for each I ∈ Ωε, the perturbed torus

preserves the frequency ω(I) of the corresponding unperturbed one.

1its frequencies ω0(I) = (ω0
1(I), . . . , ω0

n(I)) are rationally independent
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Pedagogical expositions on the different approaches to prove the classical KAM theorem

above can be found in [36] and [102]. Improvements on the regularity requirements of the

Hamiltonian are due to Rüsmann (1970) and (in various contexts) Pöschel (1980).

Among the studies on the problem of the persistence of a fixed Diophantine torus that

preserves the toral frequency are Benettin, Galgani, Giorgilli and Strelcyn (1984) who used

Lie transforms and follow the Kolmogorov’s approach to prove the existence of a torus

with a prescribed frequency (cf. [11]). Eliasson (1996; in fact, 1988) used a so-called “direct

method” in the theory of small divisors to prove the convergence of Lindstedt series and thus

the existence of quasi-periodic solutions for a nearly integrable real analytic Hamiltonian.

Eliasson’s work would inspire those of Chierchia and Falcolini (1994), who developed a

method of weighted trees to exhibit the cancellation of resonant terms (cf. [27]), and of

Gallavotti (1994) who used renormalization group theory ideas and tree expansions as in

the previously cited work (cf. [45]), a more detailed work is also found in [46]. Other works

on the direct method using renormalization group ideas are [44] and [24].

In the degenerate case, i.e., when (2.3.1) is not satisfied, the weakest assumption on

the frequencies that still yields to persistence of tori is the so-called Rüssman condition

(Rüssman 1990), which says that frequencies {ω(I) : I ∈ Ω} should not lie on any hyper-

plane that contains the origin (cf. [86]). Other important generalizations of the classical

KAM theorem above under degenerate conditions are due to Cheng and Sun (1994) who

replaced the non-degeneracy condition by a condition on the range of the frequency map

(cf. [26]); Xu, You and Qiu (1995) who showed that the Rüssman condition is equivalent

to a condition on the rank of a certain matrix of the frequencies and their derivatives (cf.

[105]); Sevryuk (1995) who proved that it suffices that the range of the frequency map is

not confined to any hyperplane in the frequency space (cf. [92]); and Chow, Li and Yi

(2002) who studied the persistence problem on a given sub-manifold in the action space

and established conditions of the Rüsmann type (cf. [29]).

In addition to the weakening of the hypothesis of the KAM theorem above, advances in

KAM theory have been driven by the study of numerous properties of the persisted tori as

well as of the dynamics around them such as the destruction of resonant tori (cf. [93]) and
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the regularity of the persisted tori (cf. [104]).

2.4 Persistence of lower-dimensional tori

We now turn to the discussion of persistence of lower-dimensional invariant tori of nearly

integrable systems. One of the reasons this topic is so important in dynamics is because of

its applications, particularly, those related to the construction of quasi-periodic solutions in

infinite-dimensional Hamiltonian systems such as discrete lattice systems and Hamiltonian

PDEs; our work deals with lattice systems and thus our need to include a few lines on the

lower-dimensional tori case.

To fix ideas, consider the following real-analytic Hamiltonian,

H(x, y, z) = h(y, z) + P (x, y, z) , (2.4.1)

where (x, y, z) ∈ Tn×D×R2m, D ⊂ Rn. We will assume the standard symplectic structure∑n
i=1 dxi ∧ dyi +

∑m
i=1 dzi ∧ dzi+m, thus Hamilton’s equations are

ẋ = hy + Py , ẏ = −Px , ż = J(hz + Pz) ,

where J is the canonical symplectic identity. Assume now that

(i) hz(y, 0) = 0.

(ii) hzz(y, 0) 6= 0 (non-degeneracy).

Observe that the (i) and (ii) imply that the unperturbed Hamiltonian, H0 = h(y, z), has

an invariant sub-manifold, x ∈ Tn, y ∈ D, z = 0, which is foliated by tori x ∈ Tn, y = y0,

z = 0, and on these tori the flow is given by x(t) = x0 + hy(y0, 0)t, y = y0, z = 0. Thinking

in KAM theory, we would then expect that a certain type of positive-measure Cantor sub-

manifold would persist after the perturbation term is added back, provided, of course, that

this term is small in some sense. In what follows we will refer to work by other authors

who proved that indeed that intuition is right (cf. [107]). To this end, we first write the

Hamiltonian in a form that is convenient when applying KAM methods; namely, let us

expand the term h(y, z) in (2.4.1) in a neighborhood of z = 0,

H(x, y, z) = h(y, 0) +
1
2
〈hzz(y, 0)z, z〉+O(z3) + P (x, y, z) . (2.4.2)
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The expansion above says that, for the unperturbed case P = 0, and in particular near an

unperturbed torus, y = y0 and z = 0, the local normal behavior is dictated by hzz(y0, 0),

provided that this matrix is non-degenerate. If we now linearize the first two terms in (2.4.2)

around y = ξ, we will obtain

H = N + P = 〈ω(ξ), y〉+
1
2
〈A(ξ)z, z〉+ P , (2.4.3)

where (x, y, z) ∈ Tn × Rn × R2m, ω(ξ) = hy(ξ, 0), A(ξ) = hzz(ξ, 0) and P = P + O(y2) +

O(z3)+O(yz) (we have omitted a constant term that does not affect the dynamics). (2.4.3)

is thus a perturbed system where the unperturbed Hamiltonian has been linearized in a

neighborhood of the torus Tn×{y = ξ ∈ D}×{z = 0}; note that ξ is regarded as a parame-

ter. The above transforms the problem of persistence of invariant tori of a fixed Hamiltonian

system, into the problem of persistence of an invariant torus of a family of perturbed linear

Hamiltonian systems. Many results on KAM theory start with a Hamiltonian in the form

(2.4.3), this is the case of the main abstract KAM presented in chapter 4.

When all the eigenvalues of JA(ξ) are simple and purely imaginary, the unperturbed

torus, y = y0, z = 0, is said to be elliptic, in that case there is a linear symplectic coordinate

transformation that writes (2.4.3) into the form

H = N + P =
n∑
i=1

ωi(ξ)yi +
1
2

m∑
i=1

Ωi(ξ)(z2
i + z2

i+m) + P . (2.4.4)

The following are the so-called Melnikov’s non-resonant conditions that guarantee the per-

sistence of lower-dimensional tori for (2.4.4),

1. 〈k, ω(ξ)〉+ Ωi(ξ) 6= 0.

2. 〈k, ω(ξ)〉+ Ωi(ξ) + Ωj(ξ) 6= 0 (no multiplicity).

3. 〈k, ω(ξ)〉+ Ωi(ξ)− Ωj(ξ) 6= 0, |k|+ |i− j| 6= 0.

For the system (2.4.4), Melnikov (1965) and Eliasson (1988) established the existence of

a real analytic invariant torus whose frequencies are close to the frequencies of the unper-

turbed torus, provided that the vector field of the perturbation is sufficiently small and

under 1-3. This result, however, is not able to prescribe the frequencies of the perturbed

torus (cf. [73, 39]). An infinite dimensional version of this theorem was later proved by

Kuksin (1987) and Pöschel (1989) (cf. [59, 77]).
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Using the nowadays called Craig-Wayne-Bourgain (CWB) method, Bourgain (1997)

proved that one can dispense with the condition on pairs of normal frequencies; i.e., con-

dition 2. above (cf. [16]). Similar results were obtained by You and by Xu (1999) and Yu

(2001) (cf. [106, 103], respectively).

When the eigenvalues of JA(ξ) are away from the imaginary axis, the unperturbed torus

is called hyperbolic. In such case, Moser (1967, [76]) and Graff (1974, [51]) proved that,

provided that the frequencies ω(ξ) are non-degenerate and satisfy a Diophantine condition,

the system (2.4.3) has an invariant torus with prescribed frequencies, see also Zehnder

(1975, 1976, [109]). A generalization of these works to include non-Floquet, frequency

varying normal forms and allowing degeneracy of the unperturbed frequencies was done by

Li and Yi (2005, cf. [67]).

The problem of persistence of lower-dimensional tori under tangential non-degeneracy,

i.e., the quadratic term in (2.4.3) is of the form 1
2〈A(ξ)(y, z)>, (y, z)>〉 and A(ξ) is nonsin-

gular in some domain, was studied by Li and Yi (2005) (cf. [67]). More recently, Han, Li

and Yi (2006) considered a Hamiltonian system of the type (2.4.3) in which the matrix com-

ponents of A(ξ) are allowed to be singular, this is the so-called “normal degenerate case”.

Using the KAM methodology these authors were able to show that, under a weak Melnikov

non-resonant condition and other conditions on the perturbative term, the majority of the

unperturbed tori persist in the presence of a small perturbation, in addition, the tori that

persist constitute a smooth family and carry quasi-periodic motions.

The extension of KAM theory to infinite-dimensional Hamiltonian systems was origi-

nally developed simultaneously by Bellissard and Vittot (1985, cf. [100] and by Fröhlich,

Spencer and Wayne (1986, cf. [43, 42]). In the infinite-dimensional case, the problem of per-

sistence of finite-dimensional tori, and thus of the existence of quasi-periodic motions, may

be formulated as follows: let H be a Hilbert space with inner product 〈·, ·〉, suppose that J is

an anti-selfadjoint operator on H where we define the two-form ω2 = −〈J−1du, du〉(ξ, η) :=

−〈J−1ξ, η〉, for ξ, η ∈ H. Let u ∈ H be such that

u̇(t) = J(Au(t) + ε∇H(u(t)) ,
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where A is a self-adjoint operator. The equation above is of the form

u̇(t) = J∇Kε(u(t)) ,

where

Kε =
1
2
〈Au, u〉+ εH(u) ,

and thus it is Hamiltonian. Assume that J and A commute and that H admits an orthonor-

mal basis {ϕ±j : j ≥ 1} such that

Aϕ±j = λjϕ
±
j , Jϕ±j = ∓µjϕ∓ j ≥ 1 ;

therefore, the spectrum of JA is given by

Spec(JA) = {±iνj : j ≥ 1, νj = λjµj} .

Fix N ∈ N and let

H0 = span{ϕ±j : 1 ≤ j ≤ N} ,

observe that this space is invariant under the flow defined by K0; moreover, K0 is foliated

by invariant N -tori

TN (I) := {
N∑
j=1

x±j ϕ
±
j : x2

j+ + x2
j− = 2Ij ∀j} ,

where I = (I1, . . . , IN} ∈ RN
+ ; moreover, every torus is foliated by quasi-periodic solutions,

u(t) = U(ωt), ω = (λ1, . . . , λN ), of u̇ = J∇K0. The question being addressed is, which of

those unperturbed tori (ε = 0) persist when ε > 0?

KAM theory in infinite dimensions evolved from answering the question above. The

framework we presented is very general and is applicable to Hamiltonian PDEs and to lattice

systems; in both cases, one must overcome a small divisor problem. In the discrete lattice

case, most models of physical significance possess a bounded linear spectrum, whereas in

the PDE one has an unbounded spectrum; in both cases infinite multiplicities is a common

occurrence.

In chapter 3 we elaborate on the background and introduction to Hamiltonian lattice

systems, whereas in chapter 4 we carry out explicitly the KAM methodology to establish
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the existence of quasi-periodic motions within an infinite lattice system with a physical

interpretation. In both chapters the reader will find plenty of references to the literature

on quasi-periodic solutions in infinite-dimensional Hamiltonian systems arising from lattice

systems and their treatment using, primarily, the KAM methodology.

The 1990’s witnessed the development of infinite-dimensional KAM theory for Hamilto-

nian PDEs with the works of Kuksin, Wayne, Craig, Bourgain and Pöschel; in particular,

the method to overcome the problems caused by infinite multiplicities is attributed to Bour-

gain, Craig and Wayne; cf. [59, 101, 66, 33, 19, 15, 79, 65, 80, 17]. Work on the nonlinear

Schrödinger, wave, beam or KdV equations using either the Kolmogorov-Arnold-Moser or

the Craig-Wayne-Bourgain methods can be found in [20, 18, 28, 49, 50, 48], to cite just a

few references. See also [32, 64].

24



CHAPTER III

BREATHERS IN HAMILTONIAN NETWORKS

Chapter Summary

In this chapter we first introduce the concept of “breather solution” by considering two

PDEs of prime importance, namely, Korteweg-de Vries and sine-Gordon equations. We

provide explicit solutions to these equations of the soliton and breather types and give

references to earlier work to sustain the general point of view that solutions of those

types are in some sense uncommon within the PDE context. We then discretize the

sine-Gordon equation to obtain a Hamiltonian system of a class that is in fact very

popular in the physical and biological sciences, namely, the Frenkel-Kontorova model;

we illustrate this with examples in section 3.2. As opposed to their continuous PDE

counterparts, discrete systems that arise from discretization of wave equations as well

as their generalizations, are well known to support solutions of the breather type, that

is, time-(quasi)periodic and spatially localized. This is the topic of section 3.3 where

we discuss earlier work on the existence of time-periodic and quasi-periodic breathers

in Hamiltonian networks of a broad class that includes those networks discussed earlier

in the chapter. Section 3.3 has the intention to emphasize the importance of the main

result presented and proved in chapter 4. We remind the reader that this chapter does

not intend to be an account of the state of the art on breathers.

3.1 Coherent structures in PDEs and in spatially extended Hamilto-
nian systems

The last twenty years have witnessed an increase in the interest in the study of coherent

structures in spatially extended Hamiltonian systems. In its classical interpretation, a

coherent structure is an organized repeating pattern that occurs within the structure of

a physical system. In a broader sense, a coherent structure is also a spatially localized

disturbance of the medium whose lifetime is long enough to be considered an important

characteristic of the system. The latter interpretation is the one we shall adopt in this

work. By spatially localized we mean that the extent of the perturbation is small compared
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to the size of the medium. Examples of coherent structures abound, for instance, in the

study of turbulent flows in incompressible Navier-Stokes equations or, more generally, in

nonlinear PDEs. In what follows we will present two important examples of such structures.

One of the simplest and most studied examples of coherent structures are solitons, which

arise as travelling wave solutions of integrable PDEs such as Korteweg-de Vries (KdV) or

sine-Gordon (sG) equations, which we will discuss briefly below. Solitons are solutions of

a particular type which reflects important symmetry properties of the structure of their

mother PDEs; for example, the form in which they depend on the independent variables

may be invariant under particular Lie group transformations; solutions with this property

are called similarity solutions (cf. [38], p 6). For instance, the KdV equation appears in

many problems of physical relevance, such as the formation of surface waves in water (cf

[40], p 174) or in the long-distance transmission of signals over optical fibers. So if we let

u(x, t) represent the water surface profile at position x at time t, then u evolves according

to the following model,

ut + 6uux + uxxx = 0 , (3.1.1)

for (x, t) ∈ R × (0,∞). The term uxxx makes this equation be of the dispersive type,

to understand this term, let us ignore the nonlinearity so the equation becomes Airy’s

equation, ut + uxxx = 0. The solution to Airy’s equation can be written down explicitly

using a Fourier transform, taking an initial condition u(x, 0) = f(x) and homogeneous

conditions at infinity, u, ux, uxx → 0 as |x| → ∞ (cf. [38] p. 18). But we are more

interested in the elementary observation that this linear PDE also admits complex-valued

travelling-wave solution components of the form exp(i(kx − ωt)) so long as the frequency

ω and wave number k ∈ Z are related by ω(k) = k3. The nonlinear dependence of the

frequency on the wave number implies that solutions which originate at time t = 0, exp(ikx),

with different wave numbers will propagate at different speeds, such phenomenon is known

as dispersion and the form in which the frequency and the wave number depend on each

other is known as the dispersive relation. The KdV equation is remarkable in the sense

that it is completely integrable for practically any initial data (cf. [38] pp. 18, 31, 32, 71);

moreover, like Airy’s equation, it too admits (real-valued) solutions of the travelling-wave
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type, u(x, t) = v(kx − ωt) for any k and ω ∈ R. Indeed, substituting the previous form of

u in (3.1.1) one obtains the following ODE in v,

−ωv′ + 6kvv′ + k3v′′′ = 0 ,

where (·)′ = d/ds, s = kx− ωt. This equation can be integrated once to get

−ωv + 3kv2 + k3v′′ = a .

Multiplying by v′ and integrating once more yields

−ω
2
v2 + kv3 +

k3

2
v′ 2 − av = b .

A traveling wave that satisfies that v, v′, v′′ vanish as s→∞ is called a solitary wave thus,

imposing solitary wave conditions on u we get a = b = 0 and so

−ω
2
v2 + kv3 +

k3

2
v′ 2 = 0 .

Solving for v′ and integrating once more we get

−
∫

k dv

v
√

ω
k − 2v

= s ,

where the minus sign is adopted for convenience. Changing variables to v = ω
2k sech2θ the

integral above results in

s =
2√
ω
k

3
2 θ + c ,

where c is constant, thus

v =
ω

2k
sech2

(√
ω

2k
3
2

(s− c)
)

and changing back to original coordinates we obtain the following explicit expression for

the solitary wave,

u(x, t) = 2−1ω

k
sech2

[
2−1

√
ω

k

(
x− ω

k
t− c

)]
.

Let us now consider the so-called modified KdV (mKdV) equation,

ut + 6u2ux + uxxx = 0 (3.1.2)

in R × (0,∞), which has applications to nonlinear long-standing waves whenever there is

polarity symmetry, this is the case in electrodynamics and in stratified films (cf. [31] and
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references therein). Like the original KdV equation, the mKdV equation is completely

integrable and admits traveling-wave soliton solutions. Indeed, the same type of integration

carried out above yields in this case

usol(x, t) =
√
ω

2
sech

[√
ω

k
(x− ω

k
t+ c)

]
. (3.1.3)

But the mKdV equation also supports a different type of solution (cf. [31]), namely,

ubr(x, t) = −4α (sech θ)
(

cosφ+ (α/β) sinφ tanh θ
1 + (α/β)2 sin2 φ sech2θ

)
, (3.1.4)

where θ = −2βx−8β(β2−3α2)t+θ0, φ = 2αx+8α(3β2−α2)t+φ0 and α, β, θ0 and φ0 are

real-valued parameters; this type of solution can be derived using, for example, the inverse

scattering method (cf. [31] or [38]). A 3d projection of (3.1.3) and (3.1.4) is included in

figure 2.

Figure 2: Solutions to the modified KdV equation. 1a (left) soliton (k = 3, σ = 1, c = 0),
1b (right) breather (α = β = 0.5, t0 = p0 = 0).

As (3.1.3) shows, solitons propagate without altering their shape; in contrast, the type of

solutions represented by (3.1.4) do change their shape as they propagate throughout space,

more precisely, in some appropriate moving reference frame these solutions will appear

spatially localized like solitons, but unlike solitons they are time periodic or time quasi-

periodic, a term that will be define more precisely later on. Solutions with the characteristics

of spatial localization and time (quasi-)periodicity are named breathers.

The concept of breather was introduced in [1] (the authors also use the term “soliton
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states”) in connection to the sine-Gordon (sG) equation,

utt − uxx + sin(u) = 0 , (3.1.5)

which has applications in the study of transmission lines made out of Josephson junctions

(see next section). Like the mKdV equation, the sG equation too admits a (kink-antikink)

traveling-wave soliton solution

ukak = 4tan−1

(
sinh νt√

1−ν2

ν cosh x√
1−ν2

)
and a (non-propagating) breather solution

ubr = 4tan−1

(
ε sin t√

1+ε2

cosh εx√
1+ε2

)
(3.1.6)

(cf. figure 3). Breather solutions had been known since before the works of [1, 2] showed

that the mKdV, KdV and sG are among certain evolution equations which can be solved by

the inverse scattering method (cf. [2] and references therein). In contrast to other methods

used to solve these equations such as the Bäcklund-Darboux transform, inverse scattering is

insightful in that it can be used to show that soliton and breather solutions can be associated

to specific eigenvalue types; for example, [31] shows that in the case of the mKdV equation,

breathers are obtained from complex-eigenvalue quartets whereas solitons can come from

real-eigenvalue pairs; moreover, it is possible to obtain one type of solution from the other

through bifurcation.

In contrast with the above, breather solutions in PDEs are exceptional. For instance,

within the class of the Klein-Gordon (KG) equation (uxx− utt = g(u), g(0) = 0, g′(0) > 0),

Segur and Kruskal ([91, 90]) (see also [56, 25]) considered the so-called φ4 model,

uxx − utt = 2u− 3u2 + u3 , (3.1.7)

and showed (arguably not rigorously as they could have missed a Cantor-like set of frequen-

cies) that, in the limit of small amplitude and frequency just under that of spatially uniform

infinitesimal oscillations (ω <
√

2), even though it is possible to obtain a Fourier represen-

tation for any real-valued, smooth, time-periodic solution to (3.1.7), the asymptotic Fourier

expansion does not correspond to a breather solution (spatially localized and time-periodic),
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Figure 3: Solutions to the sine-Gordon equations. 2a (left) Kink-antikink soliton solutions
(ν = 0.6). 2b (right) breather solutions (ε = 5).

it does however represent approximate breathers to all orders. In the same vein, Sigal (cf.

[94]) showed that periodic and quasi-periodc solutions of linear wave equations are unstable

under generic nonlinear perturbations, he also showed that the majority of periodic and

quasi-periodic solutions of nonlinear PDEs of the Schrödinger type are unstable as well. In

relation to the sG equation, Denzler (cf. [37]) showed that, except for a one-dimensional

linear space of perturbation functions, the family of breathers described by (3.1.6) does

not persist under analytic perturbations up to first order of the perturbation parameter;

Denzler’s result is an extension of earlier work by Birnir, McKean and Weinstein (cf. [14]).

In the same vein, a numerical study by Birnir (cf. [13]) showed that most perturbations of

the sG equation will cause breathers to radiate, blow up and split into kink-antikink pairs.

The sG equation is practically the only equation of its kind which will sustain non-radiating

breathers (cf. [23] p. 29); nevertheless, one can still find in the literature oscillatory so-

lutions that are long-lived and spatially localized and which some authors will refer to as

“breather modes” or “breather-like” solutions.

KdV, mKdV and sG equations are examples of nonlinear Hamiltonian PDEs, that

is, equations which (provided suitable boundary conditions are supplied) with the ap-

propriate choice of symplectic Hilbert scale (cf. [64] p.15) can be written in the form

∂tξ = J(ξ)∇h(ξ, t) =: Vh(ξ, t), where J = (−J̄)−1 and J̄ is an anti-self-adjoint opera-

tor depending smoothly on ξ; h is the C1-smooth Hamiltonian function and Vh is a, say,
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C1-smooth, Lipschitz continuous vector field so the Hamiltonian ODE problem is well-

posed (i.e., existence and uniqueness of solutions which depend smoothly on the initial

condition is guaranteed). For instance, the Hamiltonian structure of the sG equation

on the unit circle (x ∈ S = R/2πZ) becomes evident if one defines −v = ∂tu, so that

∂tv = −uxx + sin(u), ξ = (u, v), J(u, v) = (−v, u) (thus J̄ = J) and h = 1
2〈Aξ, ξ〉 + H(ξ)

where A(u, v) = (−uxx, v), H(u, v) = −
∫

cosu(x) dx, thus ∇H(u, v) = (sinu, 0), and the

resulting Hamiltonian equations are ∂tξ = J∇h = J(Aξ +∇H(ξ)).

Whereas the works by Sigal and Denzler cited above indicate that in fact breathers are

rare and non-robust solutions of nonlinear Hamiltonian PDEs, this is not quite the case

in spatially discretized versions of those same PDEs. Consider for instance the following

näıve semidiscretization of the sG equation where the spatial partial derivative is simply

substituted by its three-point central difference approximation via the identifications

u(xn, t) −→ un(t) ,

uxx(xn, t) −→
u(xn+1, t)− 2u(xn, t) + u(xn−1, t)

h2
.

In that case one can readily see that (3.1.5) becomes the following nonlinear system of

second-order coupled equations,

ün −
1
h2

(un+1 − 2un + un−1) + sin(un) = 0 , n ∈ Z ,

which we will prefer to rewrite as

ün + V ′(un) = ε∆n({u}) , n ∈ Z , (3.1.8)

where V (x) = 1 − cos(x), ∆n({u}) = −∂WsG({u})/∂un, WsG({u}) = 1
2

∑
k(uk+1 − uk)2

and ε = 1
h2 . It is not difficult to see that, if we now define conjugate variables, qn = un and

pn = q̇n (3.1.8) becomes a Hamiltonian system

q̇n =
∂H

∂pn
, ṗn = −∂H

∂qn
, n ∈ Z , (3.1.9)

with formally defined Hamiltonian function

H =
∑
n

(
1
2
p2
n + V (qn)) + εWsG({q}) . (3.1.10)
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(3.1.10), or its associated system of equations (3.1.9) is an example of what we will call a

one-dimensional (1d) Hamiltonian lattice system or Hamiltonian network (also chain). V

is the so called on-site substrate potential or self-interaction term, its evaluation at qn can

be thought of as the contribution to the dynamics of the nth lattice point arising from its

interaction with the medium. ε is the coupling strength parameter, setting ε = 0 uncouples

the system, when ε >> 1 the chain is said to be rigid in which case the interaction among

lattice points is stronger than their interaction with the substrate. W is the coupling

potential and models the interaction among the lattice points, the particular form of this

potential makes the coupling of the nearest-neighbor type, that is, the only lattice points

that affect the dynamics of a particular point are those adjacent to it. Let us here add that

the case when ε = 0 and V (x) = 1
2x

2 for all n, is referred to as an uncoupled system of

identical harmonic oscillators.

(3.1.10) is a Hamiltonian network of identical anharmonic oscillators with nearest-

neighbor coupling, we will refer to it simply as the discrete sG system. Unlike its continuous

analog, the sG equation, the discrete sG system is not exactly integrable and for this reason,

most of the work done on this system is numerical. For example, a simple method to solve

numerically the discrete sG system to find a solution of the soliton type can be found in

[30]; this work uses a Runge-Kutta method to fourth order with initial conditions derived

from a kink solution to the continuous case, using mid-point interpolation for the position

and speed of the kink. The interplay between Hamiltonian PDEs and discrete Hamiltonian

system is, by many reasons, an interesting subject in its own right but we will not discuss

it here, we will simply limit ourselves to say that the passage from a discrete system to a

PDE can be done in basically two ways. One way is the sometimes called continuum limit

approximation and consists in simply reversing the näıve semidiscretization substitution

mentioned above by replacing, modulo a spatial re-scaling, a nearest neighbor interaction

term by a spatial second-order partial derivative thus, for example, (3.1.8) becomes the

integrable sG equation (3.1.5). However, the semi-discretization method, although histor-

ically the first one to be used, does not take into account lattice-discreteness effects and

sometimes leads to ill-posed nonlinear PDEs whose developing of singularities in finite time

32



prevents the formation of coherent structures. The second way to obtain a PDE from a

lattice system was originally developed by P. Rosenau for the Fermi-Pasta-Ulam system (a

1d Hamiltonian network in the absence of a substrate potential) and the FK model with a

generalized type of nearest neighbor interaction (cf. [82]). Rosenau’s method is developed

further in [84, 83] and it is nowadays known as the quasi-continuum limit approximation;

this method takes into account lattice-discreteness effects by including a regularization step

that consists in an expansion in the lattice spacing followed by the identification and inver-

sion of an operator of the Schrödinger type, this inversion creates dispersive terms which

compensate for the steepening of solutions caused by nonlinearity, thus making it possible

for localized modes such as breathers or kinks to arise. The quasi-continuum limit, however,

requires the assumption of a lattice-interaction term with a predominant linear part. The

nonlinearity vs. dispersion mechanism responsible for the ability of a system to sustain

localized modes such as solitons or breathers was identified once again years later when

exact results on the existence of breathers in lattice systems emerged.

Despite of the fact that exact integrability is not a generic property of Hamiltonian

networks, it is still possible to establish the existence of special solutions. For example,

MacKay and Aubry (cf. [70]) proved the existence of time-periodic breather solutions for

a large class of time-reversible Hamiltonian networks of which (3.1.10) is but a particular

case, other works on existence of solutions for Hamiltonian networks of a more general type

than the discrete sG system will be discussed in section 3.3. Other nonlinear PDEs whose

discretization lead to Hamiltonian lattice systems are the nonlinear Klein-Gordon (NLKG)

equation, 1
c2
ψtt − ∇2ψ + V ′(ψ) = 0, which arises as a generalization of the relativistic

equation of a free charged particle in an electromagnetic field, and nonlinear Schrödinger

(NLS) equations, iAt + Axx ± A|A|2, which govern the modulation of a weakly nonlinear

wave packet in a moving medium, which are frequently used in nonlinear optics.

One may think system (3.1.8) is artificial in the sense that it came from the discretization

of a PDE as opposed to being a mathematical model of a problem from the natural sciences,

but, as we will see in the next section, the Hamiltonian network (3.1.10) pertains to a broad

class of Hamiltonian networks that is commonly found in many problems in Physics and in
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Biology.

3.2 Examples of Hamiltonian networks in Physics and in Biology

3.2.1 The Frenkel-Kontorova model

In 1938 Ya. Frenkel and T. Kontorova proposed a mathematical model to describe the

dynamics of a crystal lattice in the vicinity of a dislocation core (cf. 3. in [21]), similar

work by L. Prandtl and U. Dehlinger dates back to ten and nine years earlier, respectively

(cf. 1. and 2. in [21]). By crystal lattice we shall understand a three-dimensional (3d)

array of atoms and by dislocation we will understand a lower-dimensional array of atoms of

a different nature, inserted within the 3d array. The success of the now celebrated Frenkel-

Kontorova (FK) model can never be over-emphasized, being a one-dimensional model is

simple and yet its proven universality extends beyond the realm of crystal lattice systems,

it also set the cannon to model more complex systems.

In simple terms, the FK model considers an alignment, which we will from here on refer

to as chain, of atoms having the same mass, called effective atoms, that are constrained

to move in the direction of the chain, thus it is a one-dimensional model. In equilibrium,

the effective atoms are assumed to lie equally spaced at a distance a0 from their nearest

neighbors, we will call this quantity the lattice spacing. The chain is immersed in a medium

or substrate that interacts with the chain via a periodic on-site potential with period as, thus

there are two different competing length scales in the FK model. We say that the system

is incommensurate whenever a0 and as are rationally independent, in such case, whereas

the interatomic interaction favors an equidistant configuration, the interaction with the

substrate favors regular spacing. In order to derive the equations of motion of the array,

we first write down the total kinetic and potential energies as the sum of the individual

energies of the atoms in the lattice thus, if we let xn denote the position of the nth atom

with respect to some fixed origin along the chain, the total kinetic energy of the system is

K =
∑
n∈Z

ma

2

(
dxn
dt

)2

,

where ma is the atomic mass (same for every n). The total potential energy is split into two

different types, the potential energy that arises from the interaction between the substrate
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and the atoms in the chain, V , and the potential energy that arises from the interaction

among the atoms themselves, W . The classical FK model assumes that, for every n, the

only atoms within the chain that affect the motion of the nth atom are its immediate

neighbors, n± 1; moreover, the influence that immediate neighbors exert upon one another

depends solely on the difference between their relative distance and their relative distance in

equilibrium (a0); furthermore, since equilibrium corresponds to a state of minimum energy

and nearest-neighbor interactions are assumed to be the same for each pair, it is reasonable

to assume that W = WFK where

WFK =
∑
n

Wint(xn+1 − xn − a0) =
∑
n

g

2
(xn+1 − xn − a0)2 ,

g is the so-called elastic constant of the medium; note that xm > xn whenever m > n. As

for the interaction between the substrate and the chain, this is assumed to be as-periodic

and the same for every atom, that is, V =
∑

n Vsub(xn), where Vsub(x + as) = Vsub(x)

for all x. In the classical FK model, atoms in the chain interact with the substrate via a

sinusoidal potential, this corresponds to expanding Vsub into its Fourier series and keeping

only the first harmonic, that is, Vsub(x)→ (1− cos(2π
as
x)) (the one being added for physical

significance), thus V = VFK where

V = VFK =
∑
n

εs
2

(1− cos(
2π
as
xn)) ,

εs is the so-called potential amplitude. Now, following the approach of classical mechanics,

the equations of motion are maẍ = −∇(V +W ), that is

ma
d2xn
dt2

= g(xn+1 − 2xn + xn−1)− εs
2

2π
as

sin(
2π
as
xn) .

It is common to write the equations above in dimensionless variables via the substitutions

t→ (2π
as

)( εs
2ma

)1/2t, xn → 2π
as
xn, a0 → 2π

as
a0, g → ( as2π )2g( 2

εs
), after which they become

d2xn
dt2

− g(xn+1 − 2xn + xn−1) + sin(xn) = 0 , n ∈ Z , (3.2.1)

this is the same type of system we encountered before in the semidiscretization of the sG

equation, also note that this system is independent of the lattice spacing.
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System (3.2.1) is the culmination of the classical FK model, many systems have been

successfully modeled by it. In its original setting, the FK model was used to describe

the dynamics around a dislocation core within a metal; dislocations are responsible for

most mechanical properties of solids, the FK model was among the first in explaining a

macroscopic property at an atomic level. A typical example of a dislocation is the one-edge

dislocation, formed when a mono-atomic semi-infinite plane (the layer) is inserted into a

perfect crystal lattice; in this case, the classical FK model has been used to describe the

dynamics of the dislocation plane itself as well as the dynamics of the atoms in the direction

perpendicular to the dislocation (cf. figures 4 and 5). Other settings in which the classical

FK model has been used is that of atomic surfaces such as the hydrogen-bond chains on a

deformable oxygen lattice (substrate) whose distortions tend to lower the activation barrier

of protons and thus promote their motion along the chain; or adsorbed atomic layers. In the

former case the effective atoms are “light” atoms forming a lower-dimensional subsystem

of a larger lattice whose remaining part plays the role of the substrate and is made out

of “heavier” atoms which are assumed fixed or their motion neglible; in the second case

the effective atoms, called adatoms, form a thin layer that is deposited on a crystal surface

made out of atoms which can only vibrate around their equilibrium positions and are thus

considered fixed.

Figure 4: Representation of a transversal view at a one-edge dislocation, in this case the
FK model can be used to accurately describe the dynamics along the dislocation line as
well as the dynamics in the direction perpendicular to it.

In the remaining of this section we will discuss some features of the dynamics of special

solutions of the FK system (3.2.1) or its approximations. Let us define q variables as the

displacement of the atoms from their equilibrium positions, that is, xn = nas + qn, n ∈ Z.
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Figure 5: The classical FK model in the commensurate case (a0 = as), at equilibrium each
adatom sits at a local minimum of the on-site potential, with only one atom per bottom
well.

Assume now that as = 2π, then sin(xn) = sin(qn) and the linearization of (3.2.1) around

its equilibrium (q = 0) is given by

q̈n + qn − g(qn+1 − 2qn + qn−1) = 0 , n ∈ Z ;

in the case of an infinite chain or a finite chain with periodic boundary conditions the system

above admits solutions of the form

qn(t) ∝ ei(ωpht−κn) , n ∈ Z (3.2.2)

provided

ω2
ph = 1 + 2g(1− cosκ) . (3.2.3)

(3.2.2) are the so-called linear excitation modes of the system and receive the name of

phonons, (3.2.3) is the dispersion relation and κ is the dimensionless wave number, |κ| < π.

The set

S := {ωph : ω2
ph = 1 + 2g(1− cosκ), k ∈ Z} (3.2.4)

is the frequency spectrum of the FK chain, one can see it consists of a finite band with

a gap (−1, 1) and cut-off frequency ωmax = ω(π) =
√

1 + 4g. The frequency spectrum

plays an important role in the existence of breather solutions for systems of the FK type;

this is intuitively clear if one thinks of a periodic or quasi-periodic solution in terms of its

Fourier expansion. If the frequency of a Fourier mode lies within the frequency spectrum

S resonance takes place and thus breather solutions are not sustained.

When the amplitudes of the q variables are not small the linear approximation is no

longer valid and one must find other ways of studying the dynamics of the chain. A common
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approach is that of considering the continuum or quasi-continuum limit approximations

mentioned in the previous section, in which the system of equations (3.2.1) is replaced by

a single PDE.

Just like in the case of the integrable sG equation, the FK model accepts kink solutions.

A FK kink (FK anti-kink) corresponds to a localized compression (expansion) of the initially

commensurate lattice’s ground state, that is, kinks are born to an excess of atoms in the

lattice and are associated a topological charge of σ = 1; similarly, anti-kinks are associated

with a decrease in the number of atoms per unit length and have a topological charge of

σ = −1. When studying their dynamics, both kinks and anti-kinks can be considered

(approximately) as virtual particles. For instance, a kink solution of (3.2.1) is of the form

un = f(nas−X), where f is a function describing the kink’s shape, in the continuum limit

approximation (g � 1) f coincides with a soliton solution to the integrable sG equation.

X is the coordinate of the kink’s center and in the case of a finite chain it is given by

σ
∑

n un + C, where C is a constant that one can choose so that X = 0 corresponds to a

minimum energy configuration. Finding the explicit form of the kink’s shape function, f , can

be done in two different ways: one way uses the quasi-continuum limit method of Rosenau

and perturbation theory (cf [23], sec. 2.3) and the other one uses a Hamiltonian formalism

(cf. [23], sec. 2.4.3, also Willis et al (1986) and Boesch et al (1988)). A characteristic of

kinks in lattice systems that is exclusive to discreteness is the existence of the so-called

Peierls-Nabarro (PN) potential which affects their dynamics, in particular, when the kink’s

energy is above that of the PN energy, the kink will “break out” and move along the chain

with a varying (oscillating) speed. In general, steady-state solutions of a lattice system

such as kinks are not found by themselves, more precisely, a moving kink will lose its

kinetic energy by radiating linear phonon modes until its energy decreases below the PN

energy at which point it becomes trapped again and continues to radiate phonon modes

until it turns into a stationary state associated to a static configuration.

The numerical analysis of breather solutions, including their stability, is handled in the

same way as in the case of kink solutions. To fix ideas, consider the following discrete NLS
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equation,

ün − g(un+1 − 2un + un−1) + ω2
0un + αu2

n + βu3
n , n ∈ Z ,

where α and β are parameters of the model. Letting as before as stand for the lattice

spacing, linearizing the equation above and substituting a plane-wave solutions one obtains

a dispersion relation,

ω2 = ω2
0 + 4g sin2 kas

2
,

which indicates finite-gap spectrum with cut-off frequency ωmax =
√
ω2

0 + 4g. Assuming

ω2
0 � g (weak coupling), one may look for slow-temporal approximate solutions of the

following form,

un = φn + ψne
−iω0t + ψ∗ne

iω0t + ξne
−2iω0t + ξ∗ne

2iω0t + . . .

under the assumptions φn ∼ ε2, ξn ∼ ε2, ψ ∼ ε, g ∼ ε2, ω2
0 ∼ 1, α ∼ 1, β ∼ 1, 1/t ∼ ε2.

The ellipsis mean that higher harmonics will be ignored. Substituting the above solution

into the system equations and keeping only lowest order terms in ε one obtains,

2iω0ψ̇n + g(ψn+1 − 2ψn + ψn−1)− 2α(φnψn + ψ∗nξn)− 3β|ψn|2ψn = 0 , n ∈ Z ,

together with the algebraic relations,

φn ≈ −
2α
ω2

0

|ψn|2 ξn ≈
α

3ω2
0

ψ2
n ,

thus, to lowest order terms, the system of equations is,

iψ̇n +K(ψn+1 − 2ψn + ψn−1) + λ|ψn|2ψn = 0 , n ∈ Z ,

where, K = g/2ω0 and λ = −(3β− 10α2/3ω2
0)/2ω0. The nonlinear discrete system above is

the one used in practice to study localized mode solutions of the original system; this same

approach is followed in the study of other nonlinear discrete systems. The approximate

equation last obtained accepts exact wave solutions ψn(t) = ψ0e
iθn , for θn = kasn−ωt and

ω = 4K sin2(kas/2) − λψ2
0. The linear stability analysis of these waves depends on k (cf.

[23] pp. 74-75).

It is perhaps not difficult to realize the limitations of the classical FK model. For in-

stance, the nearest-neighbor form of the coupling potential comes from the elastic properties
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of the system, rather than from the electric interaction among the atoms. From a more sub-

tle perspective, one may be interested in modeling the dynamics of multi-layers of adatoms

deposited on a substrate of heavier atoms, in such case the multi-layer may be modeled as

1d chains of adatoms in parallel that interact with one another via weakly coupling, forming

what it is known in the physics literature as quasi-1d chains. An example of a quasi-2d

model of coupled adatomic chains can be found in [22], where the dynamics of kinks is

considered on a system of coupled FK rigid chains. In [22] a kink is a soliton (also called

topological soliton) which describes the transport of mass along a chain due to an excess

of adatoms in a commensurate lattice; the rigidity of the lattice allows for a continuum

approximation that transforms the system of chains into a sG system (cf. figure 6). We will

come back to the form of the coupling potential when we discuss the system model studied

in the next chapter.

Figure 6: A quasi-2d model is obtained when a double-layer lattice is adsorbed into a
substrate of heavier atoms; the dynamics of the double layer can be modeled by coupling
two FK chains where the coupling among adatoms is stronger than the effect that the
substrate exerts on them.

3.2.2 Micromechanical cantilever arrays

A typical michromechanical cantilever array consists of cantilevers of different lengths con-

nected to one another by an overhang, forming a comb-like structure. Cantilevers are made

of a thin film a few hundreds of nanometers thick and they may be of two different fixed

lengths of the order of micrometers. For example, [87] describes a cantilever array made

out of a Si3N4 film, 300nm thick; the cantilevers are of two different lenghts, 55µm and

50µm, with a width and pitch of 15 and 40µm, respectively. The experimental creation,

detection and even manipulation of ILMs in this type of arrays has been reported in many
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places before, this brief section is based on [87, 71, 88]. The type of ILMs produced in

cantilever arrays behave like breathers for a relatively long period of time, they appear as

a single sustained oscillation which is localized in the sense that it usually involves just

a small number of elements in the array; such oscillations can be photographed and their

characteristics measured. [87] discusses the case of a cantilever array bonded to a piezo-

electric which acts as the driver of the system. At the beginning of the experiment the

piezoelectric produces chirping which can be modeled as white noise, the chirping continues

during a period of time in which several ILMs are created, then the piezoelectric enters

a fixed frequency mode where ILMs which are in synchrony with the piezoelectric are fed

their amplitudes which results in their locking, whereas asynchronous ILMs move across

the array and eventually disappear. In order to observe ILMs, one focuses a laser beam

on the array, the reflected beam is then captured by a camera which is not fast enough to

measure the vibrations in the system, however, when several ILMs are locked, the reflected

beam misses the camera which will then register a darker region at the site of the cantilever

that supports the ILM. When the piezoelectric quits, those locked ILMs die out without

hoping to other lattice sites. This relatively straightforward method to detect ILMs also

serves to observe their interaction with one another; for example, once the piezoelectric

starts vibrating at a constant frequency, those ILMs asynchronous with it may bounce on

the locked ILMs, and when the piezoelectric quits, neighboring locked ILMs may repel each

other an disperse.

In order to derive the dynamic equations of a cantilever array of two alternating length

sizes, say a and b, let xai be the displacement of the free end of the ith cantilever from

its position at equilibrium, then one may think of xai as the displacement of a point with

mass ma. The term to model the coupling among cantilevers varies and depends on the

particular array one is considering. For the systems discussed in [87], their authors prosed

that the coupling among cantilevers be of the nearest-neighbor type and harmonic, while

the on-site interaction term is assumed to be anharmonic and produced by a fourth-order
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term; therefore,

maẍai +
ma

τ
ẋai + k2axai + k4ax

3
ai + k(2xai − xbi − xbi−1) = maα ,

mbẍbi +
mb

τ
ẋbi + k2bxi + k4bx

3
bi + k(2xbi − xai+1 − xai) = mbα ,

for i ∈ Z and where α is a common acceleration term for each cantilever provided by the

piezoelectric. τ is the energy lifetime. The fact that nearly identical experimental conditions

produce the same type of excitations, suggests that the modes produced in this experiment

are not due to impurities in the system.

The model above was revisited in [71] in the case of cantilevers of the same length,

ẍi + γẋi + k2xi + k4x
3
i − k(xi+1 − 2xi + xi−1) = A(t) , n ∈ Z .

The authors used a method called nonlinear response manifold (NLRM) to develop a sys-

tematic way to find parameter regimes within which the system can develop ILMs. A simple

example of the NLRM technique consists in driving the system with a periodic forcing such

as A(t) = A0 cos(ωdt) and then using a Newton method to determine the dependence in A0

of the amplitude of oscillation of a particular cantilever which oscillates periodically with the

same frequency as the driver, say, xi = xi,0f(ωdt), where f is a periodic function of period

2π. In this work it is concluded that breather solutions to the system of equations above

can be obtained in a driven system with damping by choosing the frequency of the driver

outside the phonon band of the system while its amplitude satisfies a certain multistability

condition for the NLRM.

An experimental setting that allows the optical manipulation of ILMs and DBs is dis-

cussed in [88], which considers the case of cantiever arrays of two lengths. In this work,

ILMs are created using the same process as described in [87]. Then an optically induced

impurity mode is created in the array by means of focusing a laser on a few cantilevers, the

laser heats up the cantilevers which reduces their spring constants (Young moduli). The

laser is then moved toward the site that sustains the ILM and it is observed that, depending

on whether the frequency of the impurity mode is below or above the band states, which

in turn depends on the change in sign of the linear spring constant of the cantilevers being

excited by the laser. It was observed that when the impurity mode is either above the
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ILM/DB frequency or below the band states, it will repel the ILM, and if the impurity

mode is above the band states but below the ILM/DB frequency, it will attract it. When

the laser is turned off, the ILM/DB will stay at the place it was in the lattice before the laser

was turned off. To characterize numerically their findings, the authors proposed the follow-

ing model for the displacement of the cantilevers free ends which requires a six-neighbor

interaction,

miẍi +
m

τ
ẋi + k2Oi(xi − z) + k4Oi(xi − z)3 +

6∑
j=1

k2Ij(−xi+j + 2xi − xi−j) +
6∑
j=1

k4Ij((xi − xi+j)3 + (xi − xi−j)3) +

ε0liwV
2

2(d+ xi − z)2
= 0 , i ∈ Z .

z(t) is the driving provided by a piezoelectric, for example z(t) = z0 cos(2πωdt), the O and

I indices stand for “on-site” and “intersite”. d is the separation between each cantilever

and the substrate, ε0 is the dielectric constant of the vacuum and li is the length of the

cantilever, li = a if i is odd and li = b if i is even. The six-neighbor interaction was necessary

in order to explain the experimental results obtained.

Figure 7: A typical cantilever array. An initial white-noise like excitation of the system
followed by a sustained single-frequency driving mode creates and feeds ILMs or DBs which
will live for as long as the driver excites the array. The optical manipulation of these modes
is achieved b means of a laser beam focused on some elements in the array.

3.2.3 Josephson-junction arrays and Josephson ladders

Josephson arrays are one of the main physical settings in which the existence of ILMs,

in particular breathers, has been predicted and observed experimentally. The literature on
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Josephson arrays is vast, this short section is based on [72, 99, 21], further bibliography in the

subject is cited therein. A Josephson tunnel junction (JJ) consists of two superconducting

electrodes separated by a thin insulating barrier, this is the so-called SIS tunneling structure

(superconductor-insulator-superconductor). The total current, I, through the junction is

given by

I = C
dV

dt
+
V

R
+ Ic sinϕ ,

where ϕ is the gauge-invariant phase difference variable, V = Φ0
2π

dϕ
dt is the voltage through

the junction (Φ0 is a constant called the flux quantum), Ic is the critical current or maximum

supercurrent of the junction, and C and R are capacity and resistive constants, respectively.

The equation above can be re-normalized to get

i = ϕ̈+ Γϕ̇+ sinϕ =: N (ϕ) , (3.2.5)

where Γ =
√

Φ0/2πIcCR2. We recognize in (3.2.5) the equation of a forced and damped

pendulum. It is possible to couple JJs using superconducting leads to form arrays of almost

any desired size and geometry whose dynamics is like that of systems of nonlinear coupled

oscillators. The equations governing the dynamics are derived from Kirchoff’s laws for

current and voltage, in addition, one has the so-called fluxoid quantization condition which

states that for every loop ` in the array the following holds,

∑
j∈`

ϕj = 2π(n` − f`) ,

where n` is an integer which comes from the multi-valuedness of the phase variables entering

in the definition of ϕ, this number has no influence in the dynamics and can thus be ignored;

f` is the total magnetic flux through the loop. One of the simplest JJ arrays consists in

connecting several JJs in parallel (cf. figure 8a), the equations for the phases are then

N (ϕj) = λ(ϕj+1 − 2ϕj + ϕj−1) + iext , j ∈ N , (3.2.6)

where λ is a self-inductance constant. In the case of an open array with N junctions

without an external magnetic field, the equations above are implemented with boundary

conditions ϕ0 = ϕN+1 = 0. In the case of circular arrays one imposes periodic boundary
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conditions ϕj+N = ϕj + 2πM , where M is the number of kinks or fluxons trapped in the

array. A breather solution in this case would correspond to one phase oscillating with a

large amplitude while the amplitudes of the oscillations of the remaining phases remain

small, a solution of this type is sometimes called oscillobreather.

Figure 8: (a) (top) A JJ parallel array biased by an external current iext. JJs are repre-
sented by crosses. The equations governing the dynamics of the phases form a damped FK
system. (b) (bottom) JJ ladder, the experimental detection of breathers in this system is
done by measuring voltages locally throughout the array.

Even though (3.2.6) corresponds to a FK system with damping for which existence

of breathers has been established theoretically; their experimental detection is virtually

impossible (cf. [72]). Nevertheless, the experimental detection of breather solutions is

possible in JJ ladders, (cf. figure 8b), whose mechanical analog is that of a set of coupled

pendulums in parallel. Let ϕvj , ϕ
b
j and ϕtJ stand for the phases of the vertical, bottom and

top junctions, respectively, in the jth loop and define ξj = ϕvj + ϕtj − ϕvj+1 − ϕbj , then,

assuming zero external magnetic flux, the flux quantization condition in this case results

in ξj = −2πf indj , where f indj is a magnetic flux term induced by currents circulating in the
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array. The dynamic equations for the phases in this case are

N (ϕtj) = −λ
h
ξj ,

N (ϕvj ) = λ(ξj−1 − ξj) + iext ,

N (ϕbj) =
λ

h
ξj ,

for j ∈ Z. h is parameter that measures the strength of the coupling between the vertical

junctions because of the presence of the horizontal junctions; the strength is given by the

quotient of the critical currents of the horizontal and vertical junctions, thus h = Ich/Icv. In

the case of a finite array, the dynamic equations are usually added open boundary conditions,

ξ0 = ξN+1 = 0. A breather solution in this case corresponds to a set of junctions being

in a resistive state with nonzero mean voltage, Vj 6= 0, whereas the other junctions librate

around an equilibrium solution (Vj = 0). This type of solutions, with localized voltages

are called rotobreathers and their existence has been established numerically (cf. [72] and

references therein).

3.2.4 DNA denaturation

Applications of breathers to the study of the dynamics of the double helix of DNA, has a

long history and rests upon the basic idea that the process of denaturation or “melting”

of the double helix by which base pairs are opened to allow their copying, can be initiated

by a mechanism of energy localization and vibration along the DNA strands. For instance,

the presence of “breather modes” along the DNA double helix is reported by Prohofsky

et al in [81], the results of their experiments suggest a relationship between these modes

and the mechanism of melting of the helix caused by the stretching of hydrogen bonds.

The authors called breathing modes those normal vibrational modes of the entire DNA

or RNA double helix which are characterized by large vibrations concentrated around the

hydrogen bond sites and small vibrations elsewhere. These vibrations consist in two strands

of the helix moving toward and away from each other. Such breather modes are believed to

promote regions where melting was easier to induce by enzyme complexes via a resonance

mechanism.

A mathematical model to study the dynamics of the DNA or RNA double helix is
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studied by Zhang in [110] where the equations of motion for the bases consist in a system of

coupled sG equations. The author studies a soliton-type mechanism by which energy travels

and concentrates along the DNA chain. We explain briefly the mathematical model. Let

the z-axis be the axis of the double helix and suppose that the plane of the nth base pair

along this axis is perpendicular to it. Each base pair can be thought of as a pair of arrows,

one pair per base pair, pointing at each other and each arrow anchored to a helix. Each

arrow has associated to it an angle that measures the deviation of the arrow with respect

to the line segment determined by the pair of points on both helices where the arrows are

attached, one thus has one pair of angles per base pair; let ϕn and ϕ′n be the angles at

the nth site. The energy of each pair has two contributions: mechanical (vibrational) and

an energy of interaction which comes from two sources, an interstrand interaction energy,

V (ϕn, ϕ′n), and an energy of interaction with other base pairs. Therefore, the total energy

of a DNA strand is

H =
∑
n∈Z

(
1
2
I(ϕ̇2

n + ϕ̇′2n ) + V (ϕn, ϕ′n) +
1
2
S(ϕn − ϕn−1)2 − 1

2
S(ϕ′n − ϕ′n−1)2) ,

where I is an average moment of inertia from the rotation of the bases around axes parallel to

the DNA axis and S is an energy constant intrinsic to the chain. The interstrand interaction

energy is given by

V (ϕn, ϕ′n) = B(1− cos(ϕn − ϕ′n)) + λ(1− cosϕn) + λ(1− cosϕ′n) +

β(3(1− cosϕn cosϕ′n)− (1− cos(ϕn − ϕ′n))) ,

for B and λ constants of the model. To study the system of equations associated to H

Zhang proposed a perturbative method (idem).

Another mathematical model to study vibrational modes in the DNA molecule was pro-

posed and studied numerically by Dauxois and Peyrard in [34]. In their model, nucleotides

on each DNA strand are seen as point masses whose significant vibration happens in the

direction transversal to the main axis of the DNA (the z−axis in the model above), vibra-

tions in the direction parallel to the DNA axis are disregarded. Using a Morse potential to

model the interaction between bases in a pair, the Hamiltonian of the model is

H =
∑
n∈Z

(
1
2
mẋ2

n +
K

2
(xn − xn−1)2 +

1
2
mẏ2

n +
K

2
(yn − yn−1)2 +D(e−ayn − 1)2) ,
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Figure 9: Representation of the base-pair angles associated to the mathematical model of
the vibration of the double helix. The vibrations of base pairs are assumed to take place
on a plane perpendicular to the DNA’s axis. Base pairs are represented by arrows in the
figure whose angles with respect to their equilibrium position are labeled ϕn and ϕ′n

where xn = (wn+vn)/
√

2, yn = (wn−vn)/
√

2 and wn and vn are the nth nucleotide displace-

ments from its equilibrium. In [34] Dauxois and Peyrard studied the thermal denaturation

of the DNA molecule and thus follow a mechanical statistical approach. From the statistical

point of view, the part of the Hamiltonian in the xn variables, which corresponds to a chain

of harmonic oscillators without a substrate potential, can be ignored.

Which Hamiltonian model is the one that describes the dynamics of the DNA molecule

is a subject for debate and it also depends on which particular feature of the dynamics

one would like to study. For example, in [35] a simple DNA model with harmonic nearest-

neighbor interaction and anharmonic on-site potential of the 2-3 type is considered. It is

shown numerically that the main contribution to the vibrations in the DNA chain comes

from breather-like modes, that is, solutions of a Hamiltonian system which, for a long

period of time, behave effectively like breathers. In appropriate dimensionless variables, the

Hamiltonian studied in the above-cited work is

H =
k

α2

∑
n∈Z

(
1
2
u̇2
n +

1
2

(un − un−1)2 + ω2
d(

1
2
u2
n −

1
3
u3
n)) .

The examples discussed in the past three sections tell us how DBs or, in general, ILMs arise
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in nature; at the same time, we hope to have provided a glimpse of their importance. But

there are many other examples in which ILMs arise naturally and which lend themselves for

theoretical, numerical and experimental studies. To mention just a few, [98] considers a 3d

scalar lattice field and uses the rotation wave approximation technique (which discards high

frequency components of the solution) together with lattice Green’s function formalism, to

numerically calculate stationary localized modes for two types of fourth-order interaction

potentials. [89] reports an experimental procedure to observe countably many ILMs in

an antiferromagnetic spin lattice. In the same vein, [96] uses spectroscopy methods to

establish the existence of intrinsic localized vibrational-energy modes (multiphonon bound

states) within a quasi-1d crystal.

3.3 Exact existence results

In this section we summarize earlier work by several authors which is mainly focused on

establishing the existence of breathers in 1d lattice systems with Hamiltonian of a general

form H = K + V, where K is the kinetic energy term and V is the term representing the

on-site and coupling potentials whose origin we explained in the previous section. We focus

in particular on four earlier results, presented in chronological order, which pave the road

to our main result in chapter four on the existence of quasi-periodic breathers and which

we regard as the next natural and necessary step in the study of breathers in Hamiltonian

networks.

In 1994, R. S. MacKay and S. Aubry published the first exact proof of the existence of

time-periodic breathers in lattice systems (cf. [70]). MacKay and Aubry considered a time-

reversible Hamiltonian network with one degree of freedom consisting of identical weakly

coupled oscillators with symmetric nearest-neighbor coupling,

WMA =
ε

2

∑
n∈Z

(qn+1 − qn)2 ,

for a generally small constant ε > 0 and a twice-differentiable on-site potential, V , such

that V ′(0) = 0, V ′′(0) = ω2
0 > 0; that is, they studied a Hamiltonian system of equations

q̈n + V ′(qn) = ε(qn+1 − 2qn + qn−1) , n ∈ Z , (3.3.1)

49



with associated formal Hamiltonian

H =
∑
n∈Z

(
1
2
p2
n + V (qn) +

1
2
ε(qn+1 − qn)2) . (3.3.2)

Observe that (qn = 0)n∈Z is clearly an equilibrium solution of (3.3.1); moreover, the lin-

earization of this system about this trivial solution is

ün + ω2
0un = ε(un+1 − 2un + un−1) , n ∈ Z ,

whose solutions are given by linear superpositions of dispersive waves (un = ei(kn−ωt))n∈Z,

k ∈ Z, also known as phonons, provided that the following dispersion relation is satisfied,

ω2 = ω2
0 + ε4 sin2(k/2) .

When ε = 0 the system decouples; i.e., every oscillator acts independently from its neigh-

bors; moreover, from the hypotheses on V it follows that, for any n ∈ Z, (qn, pn) = (0, 0) is

an isolated local minimum of the nth oscillator’s energy, Hn(pn, qn) = 1
2p

2
n + V (qn); there-

fore, this point is a stable equilibrium point of the 2d system q̇n = pn, ṗn = −V ′(qn), in

fact, a center, and every orbit (qn(t), pn(t)) that starts in a sufficiently close neighborhood

of (0, 0) is periodic (cf. [52], pp. 176-177).

In order to state the main result in [70], we need to formalize the notions of non-

resonance and anharmonicity, which up to this point we have been using rather informally.

Consider the Hamiltonian system consisting of one oscillator and Hamiltonian function H =

1
2p

2 +V (q), where V is as described above thus, it is always possible to find a neighborhood

of the origin (0, 0) where the level sets of H consist in closed curves that enclose the origin,

so let C be one such level curve with energy energy H = E. We define action-angle variables

on C in the usual way: the action, I, of C is the area enclosed by it, divided by 2π, i.e.,

I =
1

2π

∮
C
p dq .

Now, E = E(I) and it is a standard result that the angular frequency of the periodic orbit

is given by

ω(I) =
dE

dI
.
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The angle variable, θ, is defined through the relation

dθ

dt
= ω(I) .

Denote the transformation to action-angle variables as

q = Q(θ, I) and p = P (θ, I) .

The type of periodic solution considered by MacKay and Aubry is obtained as a continuation

of the periodic solution which, at the anti-continuum limit ε = 0 (that is, the unperturbed

case), consists of a single oscillator vibrating with frequency ω0 while all the other lattice

oscillators remain at rest in equilibrium. A solution of this kind, when only one oscillator

vibrates is sometimes referred to as a one-site breather. A one-site breather solution of the

unperturbed system with action I0 is said to be non-resonant provided that

ω(I0) 6= ω0

n
, for all n ∈ N .

The non-resonance condition has the purpose of avoiding resonances between the Fourier

components of the solution and the linear phonons when the coupling is turned on, that is

when ε > 0 and small. In addition, we say that a periodic orbit with action I0 is anharmonic

provided that
dω

dI
(I0) 6= 0 ;

this is a non-degeneracy condition of the dependence of the frequency on the amplitude of

the oscillation.

In essence, MacKay and Aubry reformulated the problem of finding periodic solutions,

as one of finding zeros of an operator F : B1 × R → B2, (z, ε) 7→ w, where z = (zn =

(qn, pn))n∈Z and w = (wn = (un, vn))n∈Z are given by

un(t) = V ′(qn(t))− ε(qn+1 − 2qn + qn−1) + ṗn(t) ,

vn(t) = pn(t)− q̇n(t) .

B1 and B2 are appropriate Banach spaces of bounded infinite sequences of pairs of con-

tinuously differentiable (B1), or just continuous (B2), T -periodic functions which satisfy

a time-reversibility (symmetry) property; namely, qn(−t) = qn(t) and pn(−t) = −pn(t);
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similarly for w. Note that the set of T -periodic time-reversible solutions of (3.3.1) are in

one-to-one correspondence with the zeros of F , i.e., with the set of all z such that F (z, ε) = 0.

The Theorem of MacKay and Aubry is the following,

Theorem 1 (MacKay and Aubry, 1994)

Let V : R → R, V ∈ Cr, r ≥ 2, such that V ′(0) = 0 and V ′′(0) = ω2
0 > 0. Let C

be a periodic orbit associated to the one-degree-of-freedom Hamiltonian H = 1
2p

2 + V ′(q)

and let I0 be its action. Assume that C is non-resonant and anharmonic. Then the pe-

riodic orbit zo = (zon = (qon, p
o
n))n∈Z of the uncoupled system (3.3.2) with ε = 0, given

by qo0(t) = Q(I0, ω(I0)t) and qon ≡ 0 for all n 6= 0, has a locally unique continuation as a

periodic orbit z = (zn = (qn, pn))n∈Z of the coupled system (3.3.2) with ε 6= 0, with the

same period T = 2π/ω(I0), provided that ε is small enough. Furthermore, z is Cr and for

every n ∈ Z, the C1 norm of zn decays exponentially as n→∞ for as long as DF remains

invertible; more precisely, let ε0 be such that DF (ε) is invertible for 0 < ε < ε0, then there

exist constants C and λ < 1, independent of ε, such that for any µ ∈ (λ, 1) and for any

n ∈ Z,

|zn| ≤ |zn(0)|ehεµ|n| ,

where h = C(1 + λ)2( 2
1+λ + µ

1−λµ + 1
µ−λ).

Observe that zo as defined in theorem 1 satisfies F (zo, 0) = 0; therefore, provided that

F is C1 and DF (zo, 0) is invertible, there exists a map ε 7→ z(ε) such that F (z(ε), ε) = 0,

for ε sufficiently small. It turns out that the exponential decay in space of the solutions

follows from a general result that asserts that the elements of the inverse of DF (zo, 0) de-

cay exponentially with the distance between sites. The time-reversibility property is crucial

when showing the invertibility of DF .

In their paper, MacKay and Aubry also point out methods to find an upper bound for

the maximum magnitude of the coupling strength ε for which theorem 1 still holds. They

also provide conditions for the existence of finitely many multi-site breathers, that is, the

continuation of solutions which at the anti-continuum limit, correspond to finitely many
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sites oscillating while all the others remain at rest; such conditions are that the frequencies

of the excited sites at the anti-continuum limit must be in rational ratio (i.e., they must

be commensurate) and their greatest common divisor must be non-resonant with the linear

phonons of the system; in addition, the relative phases of the excited sites must be chosen

so as to keep the time-reversibility property. Extensions to the case of unequal oscillators

or longest-than-nearest-neighbor interactions are also suggested but, as in the case of multi-

site breathers no proofs are provided. One must point out, however, that the non-resonance

condition in the case of multi-site breathers may be hard to satisfy since the harmonics

of the breather frequencies in the uncoupled case may densely fill the real axis and thus

resonance with the linear spectrum may be inevitable. The methodology of MacKay and

Aubry, using the implicit function theorem, has come to be known as the anti-integrability

(cf. [7]) or, more suitably in this case, the anti-continuity method (cf. [8]).

Motivated by proving the exponential stability of time-periodic breathers conjectured in

[70], D. Bambusi (cf. [10]) developed an alternative proof of the existence of time-periodic

breathers in infinite lattice systems which is similar to the proof of MacKay and Aubry in

what it uses Poincaré-continuation theorem ideas, but unlike the above-mentioned proof it

also uses Nekhoroshev normal form ideas to develop a general theorem that gives a local

normal form for abstract Hamiltonian systems in (possibly infinite-dimensional) Banach

spaces that does not require the use of action-angle variables. The general normal form

theorem developed in [10] is important in its own right as it bypasses issues such as the

singularity of the action-angle coordinates or their explicit calculation required to check

analyticity of the Hamiltonian; this theorem is also applicable in perturbed Hamiltonian

systems near an unperturbed quasi-periodic orbit with a finite number of frequencies, an

idea that the author exploits later on to prove the existence of quasi-periodic breathers

in lattice systems (cf. [9]). In [10] Bambusi applies his normal form theorem to prove

the existence of time-periodic breathers in the case of identical lattice oscillators with a

long-range coupling potential

WB =
ε

4

∑
m6=n

1
|m− n|α

(qm − qn)2 ,
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where α > 1 and ε is sufficiently small; observe that in the limit α→∞WB becomes WMA.

WB is second-order in the displacements qn; we will call the coefficients Cmn = 1/|m−n|α,

power-law coupling coefficients. The associated Hamiltonian and equations of motion are

H =
∑
n∈Z

(
1
2
p2
n + V (qn)) + ε

1
4

∑
m 6=n

1
|m− n|α

(qm − qn)2 ,

q̈n + V ′(qn) = ε
∑
k≥1

1
kα

(qn+k − 2qn + qn−k) ,
(3.3.3)

where V is assumed real analytic and, as it was the case before, V ′(0) = 0 and V ′′(0) = ω2
0 >

0. In order to state Bambusi’s theorem on the existence of periodic breathers for (3.3.3)

we need to set some notation. First, the type of periodic orbits found in [10] correspond

to solutions which at the anticontinuum limit are one-site breathers; that is, all sites are in

equilibrium except for the zeroth lattice point which oscillates at frequency ω, such that ω

is Diophantine with ω0; i.e., we assume that there exists ν > 0 such that

|ωk1 + ω0k2| ≥
ν

|k|2
, ∀ (k1, k2) ∈ Z2\{0} ,

where |k| = |k1|+ |k2|. At the anticontinuum limit the zeroth order oscillator’s Hamiltonian

is H0 = 1
2p

2
0 + V (q0). The hypotheses on V guarantee the existence of local action-angle

variables (I, θ) ∈ R+ × T; in these coordinates H0 is a function of the action alone; i.e.,

H0 = h(I), and the equations of motion become I(t) ≡ I0 and θ = ω(I0)t + θ0, where

ω(I0) = ∂h/∂I|I=I0 . Now define the associated phase space, P = R+×T× `2× `2, where `2

is the space of square summable sequences. Denote by ζ = (I, φ, {pk}k 6=0, {qk}k 6=0) a point

in the phase space P and by γ0(J) = {(I, θ, p, q) ∈ P : I = J, θ ∈ T, p = q = 0} the phase

space trajectory of an unperturbed periodic orbit (one-site breather). P is then endowed

with the norm

‖ζ‖2 = ‖(I, θ, {pk}k 6=0, {qk}k 6=0)‖2 = max{|I|2, ε|θ|2, 1
2

∑
k 6=0

(p2
k + ω2

0q
2
k)} ;

we will denote by d be the distance induced by this norm.

Theorem 2 (Bambusi, 1995)

Consider the Hamiltonian system (3.3.3) where V ′(0) = 0 and V ′′(0) = ω2
0 > 0. Let P be
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the phase space defined above and d its distance function. Assume that there exists J such

that

ω = ω(J) =
∂h

∂I
(J)

is diophantine with ω0. Let Ẽ = h(J), where h is the action-dependent energy of the zeroth

oscillator in the unperturbed system. Then there exist positive constants ε∗, C1, . . . C6

such that, whenever 0 < ε < ε∗, on the energy surface H = Ẽ there exists a periodic orbit

with phase space trajectory γ such that

(i) ∀ ζ ∈ γ, d(ζ, γ0) ≤ C1ε
1/2, γ0 as defined above (one-site breather).

(ii) γ is exponentially stable, that is, for any initial data ζ0 such that d(ζ0, γ) ≤ C2
√
ε, one

has

d(ζ(t), γ) ≤ (1 + C3ε
1/6)(d(ζ0, γ) + C4

√
|t|ε5/6e

− 1
2

(
C6
ε

)1/6

) ,

for all t such that |t| ≤ C5e

(
C6
ε

)1/6

.

The normal form theorem developed by Bambusi consists of a formal recursive algorithm

to write the Hamiltonian in normal form up to any finite order in a way that the size of the

remainder is exponentially small, we will not state his theorem here but refer the reader

to [10]. Although this procedure is standard, the novelty introduced in [10] is the use of

Fourier expansions.

The same normal form approach based on Poincaré-Lyapunov continuation techniques

is used again in [9] to prove the existence of (time) quasi-periodic breathers for a large

class of Hamiltonian lattice systems with nearest-neighbor interaction potential, whenever

there are integrals of motion that are independent of the Hamiltonian and which arise from

symmetries. This method is applied to revisit and refine earlier work by other authors on

the DNLS and adiabatic Holstein quantum models in which the existence of quasi-periodic

breathers with two non-resonant frequencies is proved; in these cases, the breather solutions

found correspond to the electron’s probability being concentrated at two lattice sites. In

addition, a quasi-periodic breather with three non-resonant frequencies is obtained for the

vector DNLS system. To finalize mentioning the work in [9] we remind that just as there are

factors which favor the formation of breathers in infinite dimensional Hamiltonian systems

55



(see [70]), there are factors that hinder it. Two such unfavorable factors are pointed out

in [9], the first factor is the coupling embedded in the nonlinearity and the second factor

is resonance with the linear spectrum. While the latter factor can in principle be avoided

if the spectrum is not continuous, the former factor can in some cases be bypassed when

the system possesses symmetries; even though the presence of symmetries is not considered

a generic property, there are many systems of physical significance which indeed possess a

type of symmetry such as spatial translation and/or time invariance. The result we will

discuss next, is a case in which the existence of breather solutions is facilitated due to the

fact that the linear spectrum is not continuous.

It was pointed out by Aubry in [7] in regards to the limited applicability of the anti-

continuity method to establish the existence of one-site breathers and, in a limited number

of cases such as the DNLS equation (cf. [55]), two-frequency quasi-periodic breathers, that

a general method to determine the existence of quasi-periodic breathers with any number

of incommensurate frequencies should relate anti-continuity and KAM methodologies (cf.

[7] p. 291). The first proof of the existence of quasi-periodic breathers with any finite

number of incommensurate frequencies in infinite lattice systems via the KAM technique

was developed by X. Yuan in [108]. Yuan considers weakly coupled lattice system with

nearest-neighbor interaction potential of the following general form,

WY =
∑
n∈Z

W (qn+1 − qn) ,

and a Hamiltonian function and corresponding equations of motion given by

H =
∑
n∈Z

(
1
2
p2
n + V (qn) + εW (qn+1 − qn)) ,

q̈n + V ′(qn) = ε(W (qn+1 − qn)−W (qn − qn−1)) , n ∈ Z ,

(3.3.4)

where the potentials V and W are assumed to satisfy the following properties,

(i) V and W are analytic in a strip domain {z ∈ C : |Im z| < δ0} for some constant δ0 > 0.

(ii) V (0) = V ′(0) = 0, V ′′(0) = β2 > 0 for β > 0, and W (x) = O(|x|3).

(iii) There exists a compact interval I ⊂ R+ such that for any h ∈ I the equation 1
2y

2 +

V (x) = h defines a simple closed curve, Γ(h), that encloses the origin.
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(iv) Let ρ(h) be the area enclosed by Γ(g), that is,

ρ(h) =
∮

Γ(h)
y dx

and assume that ρ′(h) 6= 0, ρ′′(h) 6= 0 for any h ∈ I.

Observe that, sinceW is of third-order, the linearization of the equations of motion yields

the same result as in the linearization of the unperturbed system, namely, q̈n + β2qn = 0

for all n ∈ Z; therefore, the linear phonons of the system have only one type of frequency,

ω0 = β, with infinite multiplicity thus, it seems plausible that the set of all the harmonics

of the frequencies considered can avoid this small linear spectrum set and thus prevent

occurrence of resonances. For a long time KAM theory had been well known for its use in

determining the existence of families of quasi-periodic solutions on an invariant manifold

associated to Hamiltonian systems with finitely many degrees of freedom. The extension of

KAM theory in the 1980’s to handle the infinite-dimensional case is attributed to the works

of Vittot and Bellissard (V-B) (cf [V-B] in [108]) and Fröhlich, Spencer and Wayne (F-S-W)

(cf. [43]). With this extension it is possible to establish the existence of almost periodic

solutions, that is, solutions with infinitely many incommensurate frequencies, in systems of

weakly-coupled oscillators with short-range coupling; more precisely, it is possible to use

action-angle variables to reduce the Hamiltonian in (3.3.4) to a form in which the existence

of almost periodic solutions can, in principle, be proved; however, in order to establish the

existence of quasi-periodic breathers, one must be able to prove the existence of a finite-

dimensional invariant torus for (3.3.4); therefore, the methods of V-B and F-S-W are not

applicable in this case. The existence of quasi-periodic solutions to infinite-dimensional

Hamiltonian systems, not necessarily of short range, was developed in the context of PDEs

such as wave and NLS equations (cf. [66, 65, 80, 79, 101]). Once again, by use of action-

angle variables, it is possible to write (3.3.4) in normal form as required in the previously

mentioned works and thus the existence of quasi-periodic breathers seems plausible by the

methods established therein; however, once again this is not the case since, in order for

those methods to apply, all normal frequencies are required to have finite multiplicities

and, as pointed out earlier, the linearization of the equations of motion in (3.3.4) reveal
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that where ω0 = β has infinite multiplicity. The contribution of [108] to the theory of

breathers consisted in developing a normal-form abstract KAM theorem from which the

existence of quasi-periodic breathers in the infinite-multiplicity case follows as a corollary.

Since we will develop an abstract KAM theorem that will allow us to handle Hamiltonians

of a more general type than that in (3.3.4) and the proof of our KAM theorem, although

simpler, is similar in the sense that it too requires a Newton-type scheme and an infinite

number of change of variables, we shall only state Yuan’s existence theorem on quasi-periodic

breathers; to this end we first need to add a few definitions.

Let J = {j1 . . . , jN} ⊂ Z be any finite sequence denoting oscillator positions, where

N ≥ 1, then equations of motion in (3.3.4) can then be regarded as a perturbation of the

following system:

ẍn + V ′(xn) = 0 , n ∈ J ,

ẍn + β2xn = 0 , n ∈ Z′ := Z\J .
(3.3.5)

Let ` be the space of sequences u = (un = (xn, yn))n∈Z′ , (xn, yn) ∈ C2, and with finite norm

‖u‖ :=
∑

n∈Z′(|xn|2 + |yn|2)e|n|/a <∞, where a is a positive constant. Define the following

inner product on `, 〈u, v〉` :=
∑

n∈Z′(un · vn)e|n|/a, where ” · ” is the usual inner product in

C2. Note that the origin is a stable center of the system (3.3.5); also, by preservation of

the quantity 1
2y

2 + V (x) = h, the first set of equations in (3.3.5) has an invariant N -torus

Γ(h1) × · · · × Γ(hN ) with frequency vector ω(η) = (H ′0(ρ(h1)), . . . ,H ′0(ρ(hN ))), where H0

stands for the inverse of ρ(h); therefore, any solution starting on T (η) = Γ(h1) × · · · ×

Γ(hN ) × {0} is a breather solution to the unperturbed system (3.3.5). Yuan’s theorem

states that a large family of these invariant tori persist, slightly deformed, as quasi-periodic

breather solutions of (3.3.4).

Theorem 3 (Yuan, 2002)

Let V and W satisfy properties (i) through (iv) above. Then, for any given integer N ≥ 1,

compact set Ω = IN ⊂ RN
+ , and constant 0 < γ � 1, there is a constant ε∗ = ε∗(Ω, N, γ),

small enough, such that whenever 0 < ε < ε∗, there is a Cantor set S ⊂ Ω, such that

m(S) = m(Ω)(1 − O(γ)), where m stands for Lebesgue measure, and a family of N -tori,
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T [S] = ∪η∈ST (η) ⊂ ∪η∈ΩT (η), together with an analytic embedding Φ : T [S] ↪→ RN×TN×`

which is a higher-order perturbation of the inclusion map, Φ0 : ∪η∈ΩT (η) ↪→ RN × TN`;

such that the restriction of Φ to each T (η), η ∈ S, is an embedding of a rotational N -torus

of (3.3.4). Moreover, any solution of (3.3.4) starting on Φ(T (η)) corresponds to a quasi-

periodic breather of frequencies ω∗ such that |ω∗ − ω| = O(ε1/3) and super-exponential

decay, i.e., |xn+N | ≤ Ce−|n|/aε(1+ρ)n/3, for fixed constants C > 0 and 0 < ρ < 1/9.

The super-exponential decay mentioned in the theorem is one of the consequences of the

interaction potential, WY , starting with a cubic term; this property of WY together with

that of being short-range, is responsible for cancellations of terms during the KAM iter-

ations and the weakening of the strength of resonance which, loosely speaking, make the

Hamiltonian be effectively finite-dimensional, in which case the existence of quasi-periodic

solutions is not prevented by resonances in the normal direction.

Almost-periodic breathers, i.e., spatially localized solutions with infinitely many incom-

mensurate frequencies were studied much earlier in [43] for a Hamiltonian network of the

form H =
∑

i∈Zd(Qi + ω2Pi) + ε
∑
〈i,j〉 f〈i,j〉(Qi, Pi, Qj , Pj), where the frequencies ωi’s are

assumed to be non-negative, independent and identically distributed random variables with

smooth a distribution of fast decay at infinity, whereas the functions f〈i,j〉’s are assumed

O(P 2 +Q2) for Q and P sufficiently small. It is showed in [43] that there is a set Ω ⊂ R∞+ of

positive probability measure, such that for each realization of the frequencies ω ∈ Ω there

is an almost periodic breather. The reader will find work on spatial structures of a more

general type in [78].

To finalize this section, we would like to briefly outline a finite-dimensional center man-

ifold reduction technique used in recent years to establish the existence of small-amplitude

time-periodic breathers in certain infinite one-dimensional lattice systems. This technique

was developed by G. James, [53], who used it to provide a numerical calculation of time-

periodic breathers in the FPU lattice; his method is in some sense an extension of the

popular rotating wave approximation technique which is applicable in the case of an even

coupling potential. The work of James is in turn based on work by Kirchgëssner, Mielke,
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Ioos and Vanderbauwhede on center manifold theory for elliptic PDEs which established the

existence of travelling wave solutions in infinite one-dimensional lattice systems (cf. Iooss

(2000), Iooss and Kirchgässner (2000) in [53]). Let as before (qn)n∈Z represent the dis-

placements of the lattice oscillators from their equilibrium positions, then the FPU system

is

q̈n = W ′(qn+1 − qn)−W ′(qn − qn−1) , n ∈ Z , (3.3.6)

where the interaction potential W is assumed Ck+1, k ≥ 6; moreover, W (0) = W ′(0) = 0

and W ′′(0) = α > 0. Observe that, for the lack of a parameter, the anticontinuity method

cannot be used in this case. The property of the system (3.3.6) of being invariant under the

translation qn → qn + c, c ∈ R, adds a degeneracy which translates into the center manifold

being of a greater dimension; in this case, the author proposed a slight modification of his

method which we just outline in here. Suppose that we are interested in finding periodic

solutions with frequency ω. Since W ′′(0) > 0, one can locally invert W ′ and introduce a

2π-periodic “force variable”, yn(t) = α−1W ′(qn − qn−1)(t/ω), which transforms (3.3.6) into

another system with a FK-type right-hand side,

α−1ω2 d
2

dt2
W(yn) = yn+1 − 2yn + yn−1 , n ∈ Z (3.3.7)

where W(y) = (W ′)−1(αy) vanishes at zero. The yn variables are 2π-periodic; moreover,

it is possible to show that, for every n, the time average of yn is independent of n; the

author assumes it to be zero and, for simplicity, restricts the qn variables to be even for

all n. Knowing the force variables allows one to recover the qn variables by integrating

the equations of motion and using their parity. Next, by defining Yn = (yn, yn−1) one can

rewrite the equations of motion in the form

Yn+1 = Fω(Yn) , n ∈ Z , (3.3.8)

where Fω is a Ck−2 operator defined locally in a neighborhood of the origin and is given by

Fω(z, y) =
(
y , α−1ω2 d

2

dt2
W(y) + 2y − z

)
,

with domain and range given by the Cartesian products of suitable Sobolev spaces of 2π-

periodic functions. The spectrum of DFω(0) consists of an essential part at the origin and
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infinitely many eigenvalues, σk, σ−1
k , k ≥ 1, which lie on the unit circle or on the real

axis and have finite multiplicities; these eigenvalues satisfy the dispersion relation σ2 +

(α−1ω2k2 − 2)σ + 1 = 0. One then writes (3.3.8) in the form

Yn+1 = DFω0Yn +N(Ynµ) , n ∈ Z , (3.3.9)

where µ = α−1ω2−4 and ω0 is a critical value at which two eigenvalues coalesce on the real

axis at σ = −1. The theory developed by James shows that for µ in some neighborhood

of the origin, all solutions to (3.3.9) that remain in a neighborhood of the origin belong to

a two-dimensional center manifold; this is what ultimately allows one to reduce the study

of the dynamics of the original FPU system to that of studying a two-dimensional system.

The theorem of James is also applicable to more general systems, including those with a

non-zero on-site potential, provided certain conditions of symmetry (time-reversibility) and

separability (of the spectrum of DFω) are satisfied. In abstract, the theorem of James, or

rather, the part that involves the reduction of the dynamics to the center manifold, states

the following,

Theorem 4a (James, 2003)

Let X be a Hilbert space and L : X → X, be a closed linear operator with domain D, not

necessarily dense in X. D is a Hilbert space continuously embedded in X, endowed with

the scalar product 〈u, v〉D = 〈Lu,Lv〉X + 〈u, v〉X . Let U × V be a neighborhood of the

origin in D×Rp and N ∈ Ck(U × V, X), k ≥ 2 a nonlinear map such that N(0, 0) = 0 and

DuN(0, 0) = 0. We are to find sequences (un)n∈Z in U satisfying the system of equations

in X,

un+1 = Lun +N(un, µ) n ∈ Z , (3.3.10)

for µ ∈ V a parameter. Observe that when µ = 0, un = 0 for all n is a fixed point of

(3.3.10); moreover, by the implicit function theorem, this fixed point persists for µ ≈ 0 a

smooth family of fixed points u(µ) ∈ D such that u(0) = 0. Assume that L has satisfies

a spectral separation property, that is, its spectrum σ(L) can be separated as follows,

σ(L) = σs ∪ σc ∪ σu, such that supz∈σs |z| < 1, |z| = 1 ∀z ∈ σc and infz∈σu |z| > 1. Then
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there exists a neighborhood Ω×Λ of the origin in D×Rp and a map ψ ∈ Ckb (Xc×Λ, Dh) that

satisfies ψ(0, 0) = 0, Duψ(0, 0) = 0 and is such that for all µ ∈ Λ there exists a manifold,

Mµ = {y ∈ D : y = x+ ψ(x, µ), x ∈ Xc} ,

with the following properties:

(i) Mµ is locally invariant under L+N(·, µ); that is, for every y ∈Mµ ∩ Ω,

Ly +N(y, µ) ∈Mµ .

(ii) If (un)n∈Z is a solution to (3.3.10) such that un ∈ Ω for all n ∈ Z, then un ∈Mµ for all

n ∈ Z; moreover, if πc is the spectral projection operator associated to σc then ucn = πcun

satisfies the recurrence relation on Xc = πcX

ucn+1 = f(ucn, µ) , ∀n ∈ Z , (3.3.11)

where f ∈ Ck((Xc ∩ Ω) × Λ, Xc) is given by f(·, µ) = πc(L + N(·, µ)) ◦ (I + ψ(·, µ)) and

f(·, µ) is locally invertible.

(iii) Conversely, if {ucn} is a solution to (3.3.11) such that ucn ∈ Ω for all n ∈ Z, then

un = ucn + ψ(ucn, µ) satisfies (3.3.10).

James and Sire [95] applied the center manifold methodology to establish the existence

of small-amplitude travelling breathers in Klein-Gordon (KG) chains with an exponentially

small oscillatory tail. The KG chains they studied are of the form

q̈n + V ′(qn) = ε(qn+1 − 2qn + qn−1) , n ∈ Z , (3.3.12)

where ε > 0 and V ∈ Ck, k ≥ 5 is locally anharmonic: V (x) = 1
2x

2 − a
3x

3 − b
4x

4 + h.o.t. A

travelling breather is a solution which satisfies that for a fixed integer p ≥ 2,

qn(t) = qn−p(t− T ) , n ∈ Z , (3.3.13)

and lim|t|→∞ qn(t) = 0. When p = 1 one has a travelling wave. In [95] the case p = 2 is

considered, thus, using (3.3.13), one can reduce (3.3.12) to

q̈1 = −V ′(q1) + ε(q2(t)− 2q1(t) + q2(t+ T )) ,

q̈2 = −V ′(q2) + ε(q1(t) = 2q2(t) + q2(t+ T )) .
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In order to apply center manifold reduction, set τ = t/T and define (u1(τ), u2(τ)) =

(x1(τ), x2(τ+ T
2 )), then, renaming τ → t and defining U = (u1, u2, u̇1, u̇2, X1(t, v), X2(t, v)),

for v ∈ [−1
2 ,

1
2 ] and Xi(t, v) = ui(t+v), i = 1, 2, one obtains the following evolution problem

U̇ = LU + F (U) , (3.3.14)

where LU = (u̇1, u̇2, α1u1 + α2(δ1/2 + δ−1/2)X2, α1u2 + α2(δ1/2 + δ−1/2)X1, ∂vX1, ∂vX2),

δaXi(t, ·) = Xi(t, a), α1 = −T 2(1 + 2γ), α2 = T 2γ; F (U) = T 2(0, 0, f(u1), f(u2), 0, 0)

and f(u) = au2 + bu3 + h.o.t. We note that if U is a solution to (3.3.14) then U ∈

C0(R, D) ∩ C1(R, H), where H = R4 × (C0[−1
2 ,

1
2 ])2 and D = {U ∈ R4 × (C1[−1

2 ,
1
2 ])2 :

X1(0) = u1, X2(0) = u2} . L is a continuous map from D into H and F : D → D is Ck−1;

moreover, F (U) = O(‖U‖2D).

The evolution problem (3.3.14) is an ill-posed initial value problem in D; however, it

still has bounded solutions for all t ∈ R; moreover, center-manifold theory allows to reduce

this system, locally, to a finite (8-)dimensional system of ordinary differential equations (see

below).

Due in part to certain reversibility properties satisfied by (3.3.14), the spectrum of the

linear operator L is symmetric with respect to the real and imginary axes; moreover, it

satisfies the separability property required in [53], its eigenvalues are isolated and have

finite multiplicities; furthermore, the central part of the spectrum, σ = iq, satisfies the

dispersion relation

(−q2 + T 2(1 + 2ε))2 = 4(εT 2)2 cos2(q/2) .

The set of equations N(iq, ε, T ) = 0, dN(iq, ε, T )/dq = 0 define a so-called bifurcation curve

which can be parametrized by q. On the bifurcation curve (except for countably many

points) the part of the spectrum of L that lies on the imaginary axis consists of two distinct

pairs of simple eigenvalues and one pair of double eigenvalues, ±iq0, thus, the L-invariant

subspace associated to the central part of the spectrum of L is 8-dimensional; call ∆ be

the region of Γ where this is the case. Now, let P represent the spectral projection onto

this L-invariant 8-dimensional subspace and set Uh = (I −P )U , then a relation of the form

Uh(t) = ψ(Uc(t), ε, T ) is valid locally, where U is a solution to (3.3.14). As for the central

63



projection Uc = PU , one has that

dUc
dt

= LUc + PF (Uc + ψ(Uc, ε, T )) . (3.3.15)

Conversely, if Uc satisfies (3.3.15) then U = Uc + ψ(Uc, ε, T ) is a solution to (3.3.14). We

summarize the main result in [95] as follows:

Theorem 4b (Sire and James, 2004)

For (ε0, T0) ∈ ∆0 ⊂ ∆, consider (ε, T ) ≈ (ε0, T0) such that L has four symmetric eigenvalues

close to ±iq0 with nonzero real parts. Then, up to order four, the normal form expression

of (3.3.15) admits homoclinic orbits to 2-dimensional tori. These solutions correspond to

the principal part of travelling breather solutions to (3.3.12), superposed at infinity to an

oscillatory tail.

As a final remark we mention that solutions to lattice systems that satisfy (3.3.13) and

the spatial localization condition lim|n|→∞ un(t) = 0 are called exact travelling breathers;

the study of this type of breathers is somewhat delicate as they might not exist without an

exponentially small oscillatory part whose presence violates the spatial localization. In their

follow-up work [54], James and Sire used the center-manifold reduction technique to prove

the existence of exact small-amplitude travelling breathers superposed on an exponentially

small oscillatory tail for the case p = 2 for certain regions in the parameter space of the

breather’s period T and the coupling strength ε. The authors proved that, in the case of an

even on-site potential, these solutions arise as homoclinic orbits to small periodic ones of a

reduced (8-dimensional) reversible system of differential equations which, written in normal

form, is integrable up to higher order terms.
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CHAPTER IV

QUASI-PERIODIC BREATHERS IN HAMILTONIAN LATTICES

Chapter summary

In [7] S. Aubry suggested that in order to prove the existence of quasi-periodic breather

solutions in lattice systems, a method was needed that related the concepts of KAM

theory and of anti-integrability. In [108] X. Yuan adapted the infinite-dimensional KAM

methodology to show that such solutions are possible in a network of weakly coupled

anharmonic oscillators with nearest-neighbor interaction. In this chapter we further

develop this approach by proving an abstract theorem of the infinite-dimensional KAM

type (Theorem B), which, in particular, implies the existence of linearly stable quasi-

periodic breathers for a 1d Hamiltonian network of weakly coupled anharmonic oscil-

lators with long-range interaction potential, in the case of constant normal frequencies

(Theorem A). Our abstract KAM theorem applies to a broader class of lattices which

includes that considered by Yuan.

We will start by motivating the model considered in Theorem A, stating Theorem B

and showing how the former follows as a corollary to the latter. The remaining sections

in the chapter are dedicated to proving the abstract KAM theorem, in particular, the

details of the first KAM step are presented in detail, followed by an iteration lemma,

convergence and measure estimates. To avoid overcrowding, some technical steps were

included in appendices A and B.

4.1 A prototype 1d lattice and its physical justification

In the rest of this work we will adopt the following notation, (qn)n∈Z = {qn}. Let, as

before, {(pn, qn)} denote the set of conjugate-variable pairs and consider a real analytic

Hamiltonian of the following form,

H =
∑
n∈Z

(
p2
n

2
+ Vn(qn)) + εW ({qn}) , (4.1.1)
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where W is a coupling potential of the following long-range type,

W ({qn}) =
∑
m 6=n

1
p
Cm,n(qm − qn)p , (4.1.2)

such that p ≥ 3, Cm,n = Cn,m = O(e−β|m−n|) are coupling coefficients of the exponential

type, m,n ∈ Z and β > 0. We will assume that the on-site potentials Vn, n ∈ Z, satisfy

conditions (V1) and (V2) below:

(V1: local convexity) for all n ∈ Z, Vn(0) = V ′n(0) = 0 and V ′′n (0) = β2/2 > 0.

Note that (V1) implies that the on-site potentials are locally convex and thus one can

also assume, without loss of generality, that for any given N ∈ Z+ and set of indices

J = {n1, . . . , nN}, there exists a compact interval I ⊂ R+, possibly depending on J , such

that, for every ni ∈ J and h ∈ I, the equation

p2

2
+ Vni(q) = h ,

defines a simple and closed curve on the pq-plane, Γi, that encloses the origin.

(V2: anharmonicity) Let

2πρi(h) def=
∮

Γi

p dq

be the area enclosed by Γi, then

ρ′i(h) 6= 0 and ρ′′i (h) 6= 0 ∀h ∈ I .

We claim that our hypothesis (V2) is a reasonable one. Indeed, for example, if the Taylor

expansion of Vn(x) around x = 0 has at least one kth-order term with k ≥ 3, then one

can show (cf. [108], cor. 1.1) that in fact ρn(h) = ah + bhk/2 + o(hk/2), where a and

b are nonzero constants thus, if for example, Vn was even and had a fourth-order term,

(V2) would be automatically satisfied. We say that Vni is anharmonic if ρ′′i (h) 6= 0 for all

0 < h � 1, thus (V2) says that, the oscillators Vni , ni ∈ J , are anharmonic over I. The

anharmonicity condition will allow us to fix a finite number of frequencies close to zero that
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we will use as parameters needed to apply the abstract KAM theorem stated in the next

section. We note in passing that the sinusoidal on-site potential used in the classical FK

model, VFK = 1− cos 2π
as
x, is an example of an anharmonic potential.

Our choice of Hamiltonian (4.1.1) is motivated by the need to model physical systems

such as those arising in the adsorption of atoms (adatoms) on crystal surfaces, these systems

can exhibit different types of excitations depending on the charge of the adatoms, the nature

of the substrate, etc. A popular lattice model in the analysis of adsorption problems consists

of the adatoms which, in equilibrium, lie periodically along a straight line every as units of

distance apart, and are subjected to an on-site potential described by a single smooth as-

periodic function, each one of its energy wells contains exactly one adatom. More precisely,

this model assumes that, for every n ∈ Z and x ∈ R, Vn(x) := V (nas + x) = V (x),

V (nas) = V ′(nas) = 0 and V ′′(nas) = β2

2 > 0, so that (V1) is automatically satisfied. Once

again, the classical FK model fits the description just given.

Figure 10: Pictorial representation of Hamiltonian network (4.1.1). The on-site potentials
are periodic-like, in the sense of (V1) and (V2), whereas the interaction potential is third-
order or above and the interaction strength decreases exponentially in the sense of (4.1.2).

As for our choice of interaction potential (4.1.2), there are basically four types of in-

teraction potentials of physical relevance that arise in lattice adsorption models (cf. [23])

these are, exponential: Wexp(x) = W0e
−β(x−as), power-law: Wpl(x) = W0(as/x)n, Morse

potential: WM (x) = W0(e−2β(x−as) − 2e−β(x−as)) and double-well: Wdw(x) = W0(1
2β

4(x −

a0)4 − β2(x − a0)2). In all these expressions, x represents the distance between any two

adatoms (not necessarily adjacent) in the chain at a particular (fixed) time and W0 is the

energy of interaction between nearest-neighbor adatoms in equilibrium. These potentials
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are commonly used in systems with long-range interactions, the exponential and power-

law potentials are convex and repulsive, whereas Morse and double-well are nonconvex (cf.

figure 11). Here we would like to focus on the exponential potential.

Figure 11: Interaction potentials with parameters as = 1, β = 0.2, W0 = 2, n = 1.

The exponential potential,

Wexp(x) = W0e
−β(x−as) , (4.1.3)

is typically found in lattices with neutral atoms that interact with one another via their

electronic clouds. Observe that if x < as, which can be the case when two adatoms are

vibrating in adjacent energy wells, the system is at a higher energy configuration in regards

to its equilibrium configuration, thus, in order to lower their energy, it is necessary for

adatoms to move farther apart, at which point the interaction with the other adatoms in

the chain becomes relevant. Note also that the farther apart, the smaller the interaction

energy between adatom pairs.

To justify our choice of the interaction potential (4.1.2), we will write down the Taylor

series of the exponential term in (4.1.3). To this end, let the equilibrium position of the

0th adatom be identified as the coordinate origin. Let xm be the absolute position of the

mth adatom with respect to the origin and let qm be its relative position with respect to its

equilibrium state; i.e., xm = mas+qm, then the distance between the mth and nth adatoms

is given by dm,n = |xm−xn| = |m−n|as +σ(qm− qn) where σ = sign(m−n). Substituting
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dm,n in Wexp and adding over all different pairs to obtain the total interaction energy we

get that

W =
1
2

∑
m6=n

Wexp(|xm − xn|)

=
1
2

∑
m6=n

W0e
−β(|m−n|as+σ(qm−qn)−as) =

1
2

∑
m 6=n

W0e
−β(|m−n|−1)ase−βσ(qm−qn)

=
1
2

∑
m6=n

W0e
−β(|m−n|−1)as(1− (βσ)(qm − qn) +

1
2!

(βσ)2(qm − qn)2−

1
3!

(βσ)3(qm − qn)3 + · · · )

=
∑
m>n

W0e
−β(m−n−1)as(1− β(qm − qn) +

β2

2!
(qm − qn)2 − β3

3!
(qm − qn)3 + · · · ).

From the above we see that our interaction potential (4.1.2) corresponds to considering

only the pth-order terms in the Taylor expansion of Wexp in relative coordinates. The

idea of expanding in its Taylor series a fundamental interaction potential and considering

only a particular higher-order term is frequently found in Physics and it has the purpose

of identifying the effects of such term in the dynamics of the system. For instance, if in

the expansion above one considers only the nearest-neighbor cubic terms together with all

(m 6= n) quadratic terms, a potential of the so-called Kac-Baker form is obtained (cf. [23]

and references therein).

For the sole purpose of simplifying the exposition, from this point on till the end of this

chapter, we will only consider the case p = 3 in (4.1.2); the proofs of theorems A and B,

which we state in the next section, will still hold with minor obvious modifications. Thus,

for those parameter values, the associated Hamilton’s equations are

d2qn
dt2

+ V ′n(qn) = ε

∞∑
k=1

Ck[(qn+k − qn)2 − (qn − qn−k)2] , n ∈ Z , (4.1.4)

where Ck = O(e−βk), β > 0.

4.2 Statements of theorems A and B

Let A be a Lebesgue-measurable set and |A| be its Lebesgue measure. For any given k ≥ 0

we say that a function f is Ck in the sense of Whitney (also Ck-Whitney) in a compact set

P ⊂ RN , if for every x ∈ P one can find polynomials Fx of degree less than k such that
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f(x) = Fx(x), x ∈ P , and |DiFx(y) −DiFx(x)| ≤ |x − y|r−iσ(|x − y|), x, y ∈ P , such that

σ is a function that tends to zero.

Consider the Hamiltonian system (4.1.1) with interaction potential (4.1.2) and whose

on-site potential satisfies (V 1) and (V 2). We will prove the following,

Theorem A. For any integer N > 1, set of indices J = {n1, . . . , nN} and 0 < r0 � 1, there

exists r1 > r0 depending on J , a family of Cantor sets Oε ⊂ O := {ξ ∈ RN
+ : r0 ≤ |ξ| ≤ r1}

for |ε| � 1, with |O \ Oε| → 0 as ε → 0 and Whitney smooth maps ω∗ : Oε → RN
+ , such

that every ξ ∈ Oε corresponds to a linearly stable, quasi-periodic breather q(t) = {qn(t)}

of (4.1.4) with N -frequency ω∗(ξ). Moreover, |q| = O(
√
|ξ|) and |qn| ∼ e−β|n| for |n| � 1.

The proof of theorem A will follow as a corollary of an abstract infinite-dimensional KAM

type of theorem via appropriate normal form reductions. We advance that the abstract

KAM theorem can in effect be applied to any Hamiltonian network of weakly coupled

oscillators with constant frequencies and an interaction potential of the long-range type.

To state the abstract KAM theorem we need to first introduce some notation. Let

N ∈ Z, N > 1, and r, s ∈ R+ be given. Let D(r, s) denote the complex neighborhood of

TN × {0} × {0} × {0} ⊂ TN × RN × `1 × `1 given by

D(r, s) = {(θ, I, w, w̄) : |Imθ| < r, |I| < s2, ‖w‖ < s, ‖w̄‖ < s} ,

where | · | is the sup-norm of complex vectors and ‖ · ‖ is the usual `1-norm. Let O ⊂ RN

be such that |O| > 0.

Let F (θ, I, w, w̄) be a real analytic function on D(r, s) which depends C1-Whitney

smoothly on a parameter ξ ∈ O. From now on, all dependencies on ξ will be assumed

C1-Whitney, thus all derivatives with respect to ξ shall be interpreted in this sense. The

Taylor-Fourier series expansion of F in θ, I, w, w̄ is given by

F (θ, I, w, w̄) =
∑
α,β

Fαβw
αw̄β ,

where α ≡ (. . . , αn, . . . ), β ≡ (. . . , βn, . . . ), αn, βn ∈ N, are multi-indices with only finitely
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many nonzero components and

Fαβ =
∑

k∈ZN , l∈NN
Fklαβ(ξ)I lei〈k,θ〉 ,

where 〈·, ·〉 stands for the usual inner product in CN . Let us define the weighted norm of F

as follows,

‖F‖
D(r,s),O := sup

‖w‖<s
‖w̄‖<s

∑
α,β

‖Fαβ‖ |wα| |w̄β| , (4.2.1)

where

‖Fαβ‖ :=
∑
k,l

|Fklαβ|Os
2|l|e|k|r , |Fklαβ|O := sup

ξ∈O
{|Fklαβ|+ |

∂Fklαβ
∂ξ

|} .

In the case of a vector-valued function, say, G : D(r, s)×O → CN , N <∞, we will define

its weighted norm as

‖G‖
D(r,s),O :=

N∑
i=1

‖Gi‖D(r,s),O .

The weighted norm of the Hamiltonian vector field

XF = (FI ,−Fθ, {iFwn}, {−iFw̄n})

associated to a Hamiltonian function F on D(r, s)×O, will be defined by

‖XF ‖D(r,s),O := ‖FI‖D(r,s),O +
1
s2
‖Fθ‖D(r,s),O +

1
s

(
∑
n

‖Fwn‖D(r,s),O +
∑
n

‖Fw̄n‖D(r,s),O) .

Associated with the symplectic structure dI ∧ dθ + i
∑

n∈Z dwn ∧ dw̄n, we will consider an

N -parametric family of real-analytic Hamiltonians

H = N + P ,

N = 〈ω(ξ), I〉+
∑
n∈Z

Ωnwnw̄n ,

P = P(θ, I, w, w̄, ξ) ,

(4.2.2)

where (I, θ, w, w̄) ∈ D(r, s), ξ ∈ O ⊂ RN is the multi-parameter, ω : O → RN is C1-

Whitney smooth, Ωn, n ∈ Z, are positive constants independent of ξ for all n, and P is

real-analytic with respect to phase variables and C1-Whitney smooth in ξ.

Observe that if we set P ≡ 0, then H = N and the associated Hamiltonian system

is completely integrable and admits a family of quasi-periodic solutions (θ + ω(ξ)t, 0, 0, 0)
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corresponding to invariant N -tori in phase space. To demonstrate the persistence of some

of these N -tori, we need the following assumptions on ω(ξ), Ωn and the perturbation P :

(A1: Non-degeneracy of tangential frequencies) ω : O → RN is C1-Whitney smooth

and non-degenerate, that is, there is a constant δ > 0 such that

|det (
∂ω(ξ)
∂ξ

)| ≥ δ , ∀ ξ ∈ O .

(A2: Constant normal frequencies)

Ωn ≡ β > 0 , ∀n ∈ Z .

(A3: Reality and regularity of the perturbation) P is real-analytic with respect to

the space coordinates and C1-Whitney smooth in ξ. In particular,

P = P̄ . (4.2.3)

(A4: Decay property of the perturbation) we will assume that

P = P̆ + Ṕ + P̀ ,

where

P̆ = P̆ (θ, I, w, w̄, ξ) = P̆ (θ, I, 0, 0, ξ) +
∑
n∈Z

αn+βn≥1

P̆n(θ, I, ξ)wαnn w̄βnn ,

is such that there exists β > 0 for which

‖P̆n(θ, I, ξ)‖ ≤ e−β|n| ∀n ∈ Z ; (4.2.4)

Ṕ = Ṕ (w, w̄, ξ) =
∑

n,m∈Z,n6=m
αn+βn,αm+βm≥1
αn+βn+αm+βm≥3

Ṕnm(ξ)wαnn w̄βnn wαmm w̄βmm ,

is such that

‖Ṕnm(ξ)‖ ≤ e−β|n−m| ∀n,m ∈ Z n 6= m ; (4.2.5)

and

P̀ = P̀ (w, w̄, ξ) =
∑
n∈Z

O(|wn|3) . (4.2.6)

72



Our abstract KAM theorem states the following,

Theorem B. Consider the Hamiltonian (4.2.2) and assume (A1)-(A4), then for fixed

γ > 0 sufficiently small, there exists a positive constant ε = ε(O, N, γ, r, s) such that

if ‖XP‖D(r,s),O < ε, then the following holds: there exist Cantor sets Oγ ⊂ O with

|O \ Oγ | = O(γ) and maps Ψ : TN × Oγ → D(r, s) , ω̃ : Oγ → RN , which are real-

analytic in θ and C1-Whitney smooth in ξ, with ‖Ψ−Ψ0‖D( r2 ,0),Oγ
→ 0 and |ω̃ − ω|Oγ → 0

as γ → 0, where Ψ0 is the trivial embedding: TN × O → TN × {0, 0, 0}, such that each

ξ ∈ Oγ and θ ∈ TN correspond to a linearly stable, N -frequency quasi-periodic solution

Ψ(θ + ω̃(ξ)t, ξ) = (θ + ω̃(ξ)t, I(t), {wn(t)}, {w̄n(t)}) of the system of equations with Hamil-

tonian (4.2.2); moreover, |wn| ∼ e−β|n|.

4.2.1 Proof of Theorem A

Recall that for simplicity of exposition we will take p = 3 in our interaction potential (4.1.2)

and that we will assume that the on-site potentials satisfy conditions (V1) and (V2), then

our Hamiltonian (4.1.1) becomes,

H =
∑
n∈Z

(
p2
n

2
+ Vn(qn)) + ε

∑
m 6=n

1
3
Cm,n(qm − qn)3 , (4.2.7)

Cm,n = Cn,m = O(e−β|m−n|). We will now derive action-angle-normal variables for (4.2.7)

and will show that, in these variables, H is in the form described in Theorem B, thus

implying the statement in theorem A. The procedure outlined below to obtain the action-

angle-normal variables is standard (cf. Appendix B, se also [108] or [4] p. 279).

Let J = {n1, . . . , nN} be as in Theorem A, then a second-order Taylor expansion of the

terms of the on-site potential associated to the set Z1 = Z \ J yields

H =
∑
n∈J

(
p2
n

2
+ Vn(qn)) +

∑
n∈Z1

(
p2
n

2
+
β2q2

n

2
+O(|qn|3)) + ε

∑
m6=n

1
3
Cm,n(qm − qn)3 . (4.2.8)

Let I ⊂ R+ and ρj(h), j = 1, . . . , N , be as in (V2); i.e., ρj(h) =
∮

Γj
p dq and Γj is the simple

closed curve given by p2

2 + Vnj (q) = h; the ρj ’s are bounded above and below by positive
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quantities, say, 0 < r′0 < ρj < r1. Without loss of generality we will further assume that I

is such that, for every nj ∈ J , ρj is invertible over I and that its inverse, H0,j : R+ → I, is

differentiable. Thus, letting (qn, pn) = ( 1√
β
vn,
√
βv̄n) for n ∈ Z1 be our normal-coordinate

change, a standard action-angle-normal coordinate-reduction procedure (cf. Appendix B)

leaves (4.2.8) in the following form

H =
N∑
j=1

H0,j(ρj) +
∑
n∈Z1

β

2
(v2
n + v̄2

n) +O(|vn|3) + ε
∑
m6=n

1
3
Cm,n(qm − qn)3 , (4.2.9)

note the obvious abuse of notation in the last term. Now let vn = (wn + w̄n)/
√

2 and

v̄n = (wn − w̄n)/i
√

2 for every n ∈ Z1, so that dvn ∧ dv̄n = idwn ∧ dw̄n), then

H =
N∑
j=1

H0,j(ρj) +
∑
n∈Z1

βwnw̄n +O(|wn + w̄n|3) + ε
∑
m6=n

1
3
Cm,n(qm − qn)3 , (4.2.10)

In order to write (4.2.10) in the normal form contained in Theorem B, we first introduce

parameters ξj by setting

ρj = ξj + Ij , j = 1, . . . , N ,

where ξ ∈ O = {ξ ∈ RN
+ : 0 < r0 ≤ |ξ| ≤ r1}, and expand each H0,j(ξj + Ij) in Taylor

series about Ij = 0, then, by disregarding constant terms that do not affect the dynamics,

we obtain

H = 〈ω(ξ), I〉+
N∑
j=1

O(|Ij |2) +
∑
n∈Z1

βwnw̄n +O(|wn + w̄n|3) + ε
∑
m 6=n

1
3
Cm,n(qm − qn)3 ,

where

ω(ξ) = (H ′0,1(ξ1), . . . ,H ′0,N (ξN )) .

Observe that, because of the anharmonicity of Vnj , given any 0 < r0 � 1, there is r1 > r0

such that ω(ξ) is a local diffeomorphism from O = {ξ ∈ RN
+ : r0 ≤ |ξ| ≤ r1} to ω(O);

therefore, (A1) is satisfied.

Now introduce the rescaling Ij → ε1/2Ij and (wn, w̄n)→ (ε1/4wn, ε
1/4w̄n), thus

H =
√
ε〈ω(ξ), I〉+ ε

N∑
j=1

O(|Ij |2) +
∑
n∈Z1

{β
√
εwnw̄n + ε

3
4O(|wn + w̄n|3)}+

ε
∑
m 6=n

1
3
Cm,n(qm − qn)3 .
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Dividing by
√
ε and a further rescaling, ε−1/2H → H, and ε1/4 → ε we arrive at

H = 〈ω(ξ), I〉+
∑
n∈Z1

βwnw̄n +

ε

∑
n∈Z1

O(|wn + w̄n|3) + ε

N∑
j=1

O(|Ij |2) + ε
∑
m 6=n

1
3
Cm,n(qm − qn)3

 .

(4.2.11)

The Hamiltonian above is of the form

H = 〈ω(ξ), I〉+
∑
n∈Z1

βwnw̄n + εP (θ, I, w, w̄, ξ) ,

thus it belongs in the parametric family described by (4.2.2), modulo renumbering, with

Ωn = β > 0 for all n ∈ Z1, thus property (A2) is satisfied. Moreover, (4.2.4) and (4.2.5)

follow from the exponential decay of the coupling coefficients and the presence of terms

O(|wn + w̄n|3) imply that (4.2.6) is also satisfied; furthermore, P is clearly real-valued.

Therefore, the existence of quasi-periodic solutions for the Hamiltonian network (4.1.1) fol-

lows from theorem B.

2

4.3 KAM Step

In this section we present the KAM iteration scheme applied to (4.2.2). This is a succession

of infinitely many steps (KAM steps or iterations) whose purpose is that of eliminating

lower-order θ-dependent terms in P . At each KAM step the perturbation is made smaller

at the cost of excluding a small-measure set of parameters. It will be shown that the KAM

iterations converge and that, in the end, the total measure of the set of parameters that

has been excluded is small. For simplicity in exposition, we have set β = 1 in (4.2.4) and

in (4.2.5).

To begin the KAM iteration, let us set r0 = r and γ0 = γ. We also recall that Ωn = β

for all n.
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4.3.1 Normal form

In order to perform the KAM iteration scheme, we will first write the Hamiltonian (4.2.2)

into a form that is more convenient for this purpose. Let ε∗ ∼ ε
5
4 and K0 = | ln ε∗| . The

reader is asked to take note of the following constants that will appear later on, K̃0 = 5K0

and ε0 = ε
5
4
∗ . We will also set s0 such that 0 < s0 < min{ε0, s}.

Observe that, according to (4.2.5) and (4.2.6) in assumption (A4), it follows from lemma

A.0.6 in Appendix A (generalized Cauchy inequality) that one can make s0 smaller if nec-

essary such that

‖XṔ+P̀ ‖D(r0,s0),O ≤ ε∗ .

We now consider the term P̆ . According to (4.2.4) and the definition of norm (4.2.1) we

have

P̆ = P̆ (θ, I, 0, 0, ξ) +
∑
n∈Z

αn+βn≥1

P̆n(θ, I, ξ)wαnn w̄βnn

=
∑
k,l

P̆klI
lei〈k,θ〉 +

∑
n,k,l

αn+βn≥1

P̆ klαnβnn I lei〈k,θ〉 wαnn w̄βnn ,

where

‖P̆kl‖ ≤ e−|k|r0 , ‖P̆ klαnβnn ‖ ≤ e−|k|r0e−|n| . (4.3.1)

Let

R =
∑
k
|l|≤1

P̆klI
lei〈k,θ〉 +

∑
k,|n|≤K0

1≤αn+βn≤2

P̆ kαnβnn ei〈k,θ〉 wαnn w̄βnn ,

so that

P̆ −R =
∑
|n|>K0
αn+βn≥1

P̆ kαnβnn ei〈k,θ〉 wαnn w̄βnn +O(|I|2) +O(|w|3) ,

then it follows from (4.3.1) and lemma A.0.6 in Appendix A that one can make s0 small

enough so that

‖XP̆−R‖D(r0,s0),O ≤ ε∗ .

To handle the term R we will first construct a symplectic transformation Φ∗ = Φ1
F∗

defined
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as the time-1 map of the Hamiltonian flow associated to a Hamiltonian F∗ of the form

F∗ = F̄∗ =
∑

k 6=0,|l|≤1

FklI
lei〈k,θ〉 +

∑
k,|n|≤K0

(F k10
n wn + F k01

n w̄n)ei〈k,θ〉 +

∑
k,|n|≤K0

(F k20
nn wnwn + F k02

nn w̄nw̄n)ei〈k,θ〉 +

∑
k 6=0,|n|≤K0

F k11
nn wnw̄ne

i〈k,θ〉 ,

such that all resonant terms {P̆klI lei〈k,θ〉 : k 6= 0 , |l| ≤ 1} and {P̆ kαnβnn ei〈k,θ〉 wαnn w̄βnn :

k 6= 0 , |n| ≤ K0, αn + βn ≤ 2} will be eliminated, whereas terms {P̆0lI
l : |l| ≤ 1},

{P̆ 011
nn wnw̄n : |n| ≤ K0} will be added to the normal form part of the new Hamiltonian.

More precisely, let F∗ satisfy the homological equation

{N,F∗}+R =
∑
|l|≤1

P̆0lI
l +

∑
|n|≤K0

P̆ 011
nn wnw̄n . (4.3.2)

One can show that this homological equation is solvable on the following parameter set

O∗ =

ξ ∈ O :

|〈k, ω〉| ≥ γ
|k|τ , k 6= 0

|〈k, ω〉+ β| ≥ γ
|k|τ ,

|〈k, ω〉+ 2β| ≥ γ
|k|τ ,

 .

In this way we obtain a transformation Φ∗ which transforms the Hamiltonian (4.2.2) into

H∗ = H ◦ Φ∗ = N∗ + P̆∗ + Ṕ + P̀ = N̄∗ + ¯̆
P∗ + ¯́

P + ¯̀
P

where

N∗ = e∗ + 〈ω∗(ξ), I〉+
∑
|n|≤K0

Ω∗nwnw̄n +
∑
|n|>K0

βwnw̄n ,

such that ω∗ = ω + P̆0l(|l| = 1) , Ω∗n = β + P̆ 011
nn , and

P̆∗ = P̆ ∗(θ, I, wn(|n|≤K0), w̄n(|n|≤K0), ξ) +
∑
|n|>K0
αn+βn≥1

P̆ ∗n(θ, I, wm(|m|≤K0), w̄m(|m|≤K0), ξ)w
αn
n w̄βnn

satisfies

‖P̆ ∗n(θ, I, wm(|m|≤K0), w̄m(|m|≤K0), ξ)‖ ≤ e−(|n|−K0) .

The first and second terms in the above expression for P̆∗ come from P◦Φ∗ and P̆◦Φ∗+Ṕ◦Φ∗,

respectively. Moreover, the decay property of P̆ ∗n follows from the fact that Φ∗ depends only

on I, θ and wm, w̄m for |m| ≤ K0.
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Now let us write the second term in P̆∗ as follows,∑
|n|>K0
αn+βn≥1

P̆ ∗n(θ, I, wm(|m|≤K0), w̄m(|m|≤K0), ξ)w
αn
n w̄βnn =

∑
|n|>5K0
αn+βn≥1

P̆ ∗n(θ, I, wm(|m|≤K0), w̄m(|m|≤K0), ξ)w
αn
n w̄βnn +

∑
K0<|n|≤5K0
αn+βn≥1

P̆ ∗n(θ, I, wm(|m|≤K0), w̄m(|m|≤K0), ξ)w
αn
n w̄βnn .

It is not difficult to see that, on D(r0, s0) × O∗, the norm of the vector field associated

with the first term above is bounded by ε2
∗; however, due to the multiple normal frequency

condition (A2), terms of the form P̆ ∗mnwmw̄n + P̆ ∗nmwnw̄m in the second term will not be

canceled by solving a homological equation, hence they need to be included in the normal

form part of the Hamiltonian. More precisely, let K̃0 = 5K0 and

R∗ =
∑
k,|l|≤1

P̆ ∗klI
lei〈k,θ〉 +

∑
k,|m|≤K0,|n|≤K̃0

1≤αm+βn≤2

P̆ ∗kαmβnmn ei〈k,θ〉 (wαmm w̄βnn + w̄αmm wβnn )

and

F∗∗ = F̄∗∗ =
∑

k 6=0,|l|≤1

fkle
i〈k,θ〉 I l +

∑
k,|n|≤K̃0

(fk10
n wn + fk01

n w̄n)ei〈k,θ〉 +

∑
k,|m|≤K0,|n|≤K̃0

(fk20
nmwnwm + fk02

nm w̄nw̄m)ei〈k,θ〉 +

∑
k 6=0

|m|≤K0,|n|≤K̃0

(fk11
nmwnw̄n + fk11

mnwmw̄m)ei〈k,θ〉 +

∑
k

K0<|n|≤K̃0

(fk20
nn wnwn + fk02

nn w̄nw̄n)ei〈k,θ〉 +

∑
k 6=0

K0<|n|≤K̃0

fk11
nn wnw̄ne

i〈k,θ〉

satisfy the homological equation

{N∗, F∗∗}+R∗ =
∑
|l|≤1

P̆ ∗0lI
l +

∑
|m|≤K0
|n|≤K̃0

(P̆ ∗011
nm wnw̄m + P̆ ∗011

nm wmw̄n) +
∑

K0<|n|≤K̃0

P̆ ∗011
nn wnw̄n .

(4.3.3)
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(4.3.3) is solvable on the domain

O0 =



ξ ∈ O∗ :

|〈k, ω∗〉| ≥ γ
|k|τ , k 6= 0

|〈k, ω∗〉+ Ω∗n| ≥
γ
|k|τ , |n| ≤ K0

|〈k, ω∗〉+ β| ≥ γ
|k|τ ,

|〈k, ω∗〉+ Ω∗m + Ω∗n| ≥
γ
|k|τ , |m|, |n| ≤ K0

|〈k, ω∗〉+ Ω∗m + β| ≥ γ
|k|τ , |m| ≤ K0

|〈k, ω∗〉+ Ω∗m − Ω∗n| ≥
γ
|k|τ , k 6= 0, |m|, |n| ≤ K0

|〈k, ω∗〉+ Ω∗m − β| ≥
γ
|k|τ , k 6= 0, |m| ≤ K0

|〈k, ω∗〉+ 2β| ≥ γ
|k|τ ,



.

We now perform another symplectic transformation Φ∗∗ = Φ1
F∗∗

, so that

H0 = H∗ ◦ Φ∗∗ = N0 + P0 = N̄0 + P̄0 ,

where

N0 = e0 + 〈ω0(ξ), I〉+ 〈A0z0, z̄0〉+
∑
|n|>K̃0

βwnw̄n ,

and we have defined,

e0 = e∗ + P̆ ∗00 ,

ω0 = ω∗ + P̆ ∗0l(|l| = 1) ,

and

〈A0z0, z̄0〉 =
∑
|n|≤K̃0

Ω∗∗n wnw̄n +
∑
m 6=n

|m|≤K0,|n|≤K̃0

(P̆ ∗011
mn wmw̄n + P̆ ∗011

nm wnw̄m) ,

where A0 is a Hermitian matrix with dim(A0) ≤ K̃0 and we have set

z0 = (· · · , wn, · · · )|n|≤K̃0
, z̄0 = (· · · , w̄n, · · · )|n|≤K̃0

,

and

Ω∗∗n = Ω∗n + P̆ ∗011
nn .
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Also,

P0 = P̆0 + Ṕ0 + P̀0 ,

P̆0 = P̆ (θ, I, z0, z̄0, ξ) = P̆ 0(θ, I, wn(|n|≤K̃0), w̄n(|n|≤K̃0), ξ) +∑
|n|>K̃0
αn+βn≥1

P̆ 0
n(θ, I, wm(|m|≤K̃0), w̄m(|m|≤K̃0), ξ)w

αn
n w̄βnn

def= P̆ 0(θ, I, z0, z̄0, ξ) +
∑
|n|>K̃0
αn+βn≥1

P̆ 0
n(θ, I, z0, z̄0, ξ)wαnn w̄βnn ,

with

‖P̆ 0
n(θ, I, z0, z̄0, ξ)‖ ≤ e−(|n|−K̃0), |n| > K̃0 ;

Ṕ0 = Ṕ (w, w̄, ξ) =
∑
n 6=m

αn+βn,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ 0
nm(ξ)wαnn w̄βnn wαmm w̄βmm ,

with

‖Ṕ 0
nm(ξ)‖ ≤ e−|n−m| ,

and

P̀0 = P̀ (w, w̄, ξ) =
∑
n∈Z

O(|wn|3) .

Lastly, we also have that ‖XP0‖D(r0,s0),O0
≤ ε

5
4
∗

def= ε0 .

Now, suppose now that after the νth KAM step one arrives at the following Hamiltonian,

H ≡ Hν = N + P = N̄ + P̄ = N + P̆ + Ṕ0 + P̀0 ,

where

N = Nν = 〈ω(ξ), I〉+ 〈Az, z̄〉 +
∑
|n|>K

βwnw̄n ,

P̆ = P̆ν = P̆ (θ, I, zν , z̄ν , ξ) +
∑
|n|>K

αn+βn≥1

P̆n(θ, I, z, z̄, ξ)wαnn w̄βnn

= P̆ ν(θ, I, zν , z̄ν , ξ) +
∑
|n|>Kν
αn+βn≥1

P̆ νn (θ, I, zν , z̄ν , ξ)wαnn w̄βnn

are defined on a domain D(r, s)×O = D(rν , sν)×Oν , K = Kν is a positive constant,

z = zν = (· · · , wn, · · · )|n|≤K , z̄ = z̄ν = (· · · , w̄n, · · · )|n|≤K ,
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P = Pν is such that ‖XP‖ < ε for some ε = εν and

‖P̆n(θ, I, z, z̄, ξ)‖D(r,s),O ≤ e−(|n|−K) , |n| > K .

In what follows, we will show how to construct a symplectic transformation, Φ = Φν , which,

in smaller frequency and phase domains, carries the Hamiltonian H = Hν into the next

KAM cycle. We ask the reader to keep in mind that, in the remaining part of this section,

all constants labeled c1 . . . c12 are positive and independent of the iteration process. We will

also denote the tensor (or direct) product between two matrices, A = (aij) and B = (bnl),

of sizes m × n and k × l, respectively, by A ⊗ B, and recall that this product results in a

new mk × nl matrix given by

A⊗B = (aijB) =


a11B · · · a1nB

... · · ·
...

am1B · · · amnB

 .

We recall that it is custom to define the operator matrix norm by ‖M‖ = sup‖y‖=1 ‖My‖.

In this work, however, if A = (aij), we will adopt the following definition for the operator

norm of A,

‖A‖ := max{sup
i

(
∑
j

|aij |), sup
j

(
∑
i

|aij |)} .

Let K+ = 5K, in the KAM step detailed below, terms wn, w̄n with K < |n| ≤ K+ will be

added to the new normal components z+, z̄+. To facilitate the calculations when solving a

homological equation later on, we will also adopt the following notation when writing N ,

N = N̄ = e+ 〈ω(ξ), I〉+ 〈Az, z̄〉+
∑

K<|n|≤K+

βwnw̄n +
∑
|n|>K+

βwnw̄n

def= e+ 〈ω(ξ), I〉+ 〈Ãz+, z̄+〉+
∑
|n|>K+

βwnw̄n ,

where Ã is a Hermitian matrix with dim(Ã) ≤ K+ and is given by

Ã =

 A 0

0 βI

 .

We will also set z+ = (· · · , wn, · · · )|n|≤K+
, z̄+ = (· · · , w̄n, · · · )|n|≤K+

.
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4.3.2 Truncation

Let us start by expanding P̆ , as obtained after the νth KAM iteration, into its Taylor-Fourier

series,

P̆ =
∑
k,l,α,β

P̆klαβe
i〈k,θ〉 I lzαz̄β +

∑
k,l,n,α,β

|n|>K,αn+βn≥1

P̆klnαβe
i〈k,θ〉 I lzαz̄βwαnn w̄βnn ,

where k ∈ ZN , l ∈ NN and the multi-index α (β) runs over the set α ≡ (· · · , αm, · · · )|m|≤K ,

αm ∈ N (resp. β ≡ (· · · , βm, · · · )|m|≤K , βm ∈ N).

Now let R be the following truncation of P̆ :

R(θ, I, z, z̄, w, w̄) =
∑
k
|l|≤1

P̆kle
i〈k,θ〉 I l +

∑
k

(〈P̆ k10, z〉+ 〈P̆ k01, z̄〉)ei〈k,θ〉 +
∑
k

K<|n|≤K+

(P̆ k10
n wn + P̆ k01

n w̄n)ei〈k,θ〉 +

∑
k

(〈P̆ k20z, z〉+ 〈P̆ k11z, z̄〉+ 〈P̆ k02z̄, z̄)ei〈k,θ〉 +

∑
k

K<|n|≤K+

(〈P̆ k20
n z, wn〉+ 〈P̆ k11

n z, w̄n〉+ 〈P̆ (−k)11
n z̄, wn〉+ 〈P̆ k02

n z̄, w̄n〉)ei〈k,θ〉 +

∑
k

K<|n|≤K+

(P̆ k20
nn wnwn + P̆ k11

nn wnw̄n + P̆ k02
nn w̄nw̄n)ei〈k,θ〉 .

Remark 4.3.1 We observe that, due to their decay property, terms in the Taylor-Fourier

expansion of P̆ corresponding to |n| > K+ are small enough to be postponed to the next

KAM step. Similarly, due to the decay property of P̆ and the fact that Ṕ0 starts from third

order terms, there are no coupling terms of the form
∑

n 6=m
K<|n|,|m|≤K+

wnw̄m in R. If Ṕ0

started from second-order terms, then the couplings between different oscillators would be

so strong that the appearance of a continuous spectrum would become feasible.

According to the normal form N , we may rewrite R as

R(θ, I, z+, z̄+) = R0 +R1 +R2

=
∑
k,|l|≤1

Pkle
i〈k,θ〉 I l +

∑
k

(〈Rk10, z+〉+ 〈Rk01, z̄+〉)ei〈k,θ〉 +

∑
k

(〈Rk20z+, z+〉+ 〈Rk11z+, z̄+〉+ 〈Rk02z̄+, z̄+〉)ei〈k,θ〉 ,

82



where

Rk10 =

 P̆ k10

P̆ k10
n


K<|n|≤K+

,

Rk01 =

 P̆ k01

P̆ k01
n


K<|n|≤K+

,

Rk20 =

 P̆ k20 1
2(P̆ k20

n )>

1
2 P̆

k20
n P̆ k20

nn


K<|n|≤K+

,

Rk11 =

 P̆ k11 (P̆ (−k)11
n )>

P̆ k11
n P̆ k11

nn


K<|n|≤K+

,

Rk02 =

 P̆ k02 1
2(P̆ k02

n )>

1
2 P̆

k02
n P̆ k02

nn


K<|n|≤K+

.

Remark 4.3.2 It is clear that (Rk20)> = Rk20, (Rk02)> = Rk02. Moreover, since R̄ = R,

P(−k)l00 = Pkl , R(−k)10 = Rk01 ,

R(−k)01 = Rk10 , R(−k)20 = Rk02 ,

(R(−k)11)> = Rk11 , R(−k)02 = Rk20 .

(4.3.4)

Now, if we write H = N +R+ (P −R), then, from our definition of norms, it follows that

‖XR‖D(r,s),O ≤ ‖XP ‖D(r,s),O ≤ ε .

Note that

P −R =
∑
|n|>K+
αn+βn≥1

P̆n(θ, I, z, z̄, ξ)wαnn w̄βnn + O(|I|2 + |I||w|+ |w|3) .

Now, let r+ = r
2 + r0

4 and η = ε
1
4 , then since

‖P̆n(θ, I, z, z̄, ξ)‖ ≤ e−(|n|−K) ,
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one has (lemma A.0.6, Appendix A) that

‖XP−R‖D(r++
r−r+

2
,ηs),O ≤

∑
|n|>K+

e−(|n|−K) +O(s) ≤ c1ε
5
4 , (4.3.5)

provided that

C0) s ≤ ε.

4.3.3 The homological equation

Below we show that one can find a Hamiltonian function F , defined on a domain D+ =

D(r+, s+) such that, the time-1 map Φ = Φ1
F associated to the Hamiltonian vector field

XF , is a (symplectic) map from D+ to D which transforms H into H+, the Hamiltonian of

the next KAM cycle. Let us propose F to have the following form,

F (θ, I, z+, z̄+) = F0 + F1 + F2 ,

satisfy the homological equation,

{N,F}+R = P̆00 + 〈ω′, I〉+ 〈R011z+, z̄+〉 , (4.3.6)

where

F0 =
∑
k 6=0
|l|≤1

Fkle
i〈k,θ〉 I l,

F1 =
∑
k

|n|≤K+

(fk10
n wn + fk01

n w̄n)ei〈k,θ〉 =
∑
k

(〈F k10, z+〉+ 〈F k01, z̄+〉)ei〈k,θ〉 ,

F2 =
∑
k

|m|≤K,|n|≤K+

(fk20
nmwnwm + fk02

nm w̄nw̄m)ei〈k,θ〉

+
∑
k 6=0

|m|≤K,|n|≤K+

(fk11
nmwnw̄m + fk11

mnwmw̄n)ei〈k,θ〉

+
∑
k

K<|n|≤K+

(fk20
nn wnwn + fk02

nn w̄nw̄n)ei〈k,θ〉 +
∑
k 6=0

K<|n|≤K+

fk11
nn wnw̄ne

i〈k,θ〉

=
∑
k

(〈F k20z+, z+〉+ 〈F k02z̄+, z̄+〉)ei〈k,θ〉 +
∑
k 6=0

〈F k11z+, z̄+〉ei〈k,θ〉 ,

ω′ =
∫
∂P̆

∂I
dθ|z+=z̄+=w=w̄=0,I=0.
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Lemma 4.3.1 Equation (4.3.6) is equivalent to the following system

〈k, ω〉Fkl = iP̆kl, k 6= 0, |l| ≤ 1 ,

(〈k, ω〉I − Ã)F k10 = iRk10 ,

(〈k, ω〉I + Ã)F k01 = iRk01 ,

(〈k, ω〉I − Ã)F k20 − F k20Ã = iRk20 ,

(〈k, ω〉I + Ã)F k11 − F k11Ã = iRk11 , k 6= 0 ,

(〈k, ω〉I + Ã)F k02 + F k02Ã = iRk02 .

(4.3.7)

Proof. (4.3.6) is equivalent to the following system of equations

{N , F0}+R0 = P̆00 + 〈ω′, I〉 ,

{N , F1}+R1 = 0 ,

{N , F2}+R2 = 〈R011z+, z̄+〉 .

(4.3.8)

By simple comparison of coefficients, we see that the first equation in (4.3.8) is equivalent

to the first equation in (4.3.7). On the other hand,

{N , F1} = i
∑
k

(〈 〈k, ω〉F k10, z+〉 − 〈Ãz+, F k10〉)ei〈k,θ〉 +

i
∑
k

(〈 〈k, ω〉F k01, z̄+〉+ 〈Ãz̄+, F k01〉)ei〈k,θ〉

= i
∑
k

〈(〈k, ω〉I − Ã)F k10, z+〉ei〈k,θ〉 +

i
∑
k

〈(〈k, ω〉I + Ã)F k01, z̄+〉ei〈k,θ〉 ,

85



and

{N , F2} = i
∑
k

(〈 〈k, ω〉F k20z+, z+〉 − 〈F k20z+, Ãz+〉 − 〈Ãz+, (F k20)>z+〉)ei〈k,θ〉 +

i
∑
k 6=0

(〈 〈k, ω〉F k11z+, z̄+〉+ 〈F k11z+, Ãz̄+〉 − 〈Ãz+, (F k11)>z̄+〉)ei〈k,θ〉 +

i
∑
k

(〈 〈k, ω〉F k02z̄+, z̄+〉+ 〈F k02z̄+, Ãz̄+〉+ 〈Ãz̄+, (F k02)>z̄+〉)ei〈k,θ〉

= i
∑
k

(〈 〈k, ω〉F k20z+, z+〉 − 〈(ÃF k20 + F k20Ã)z+, z+〉)ei〈k,θ〉 +

i
∑
k 6=0

(〈 〈k, ω〉F k11z+, z̄+〉+ 〈(ÃF k11 − F k11Ã)z+, z̄+〉)ei〈k,θ〉 +

i
∑
k

(〈 〈k, ω〉F k02z̄+, z̄+〉+ 〈(ÃF k02 + F k02Ã)z̄+, z̄+〉)ei〈k,θ〉

= i
∑
k

〈(〈k, ω〉F k20 − ÃF k20 − F k20Ã)z+, z+〉ei〈k,θ〉 +

i
∑
k 6=0

〈(〈k, ω〉F k11 + ÃF k11 − F k11Ã)z+, z̄+〉ei〈k,θ〉 +

i
∑
k

〈(〈k, ω〉F k02 + ÃF k02 + F k02Ã)z̄+, z̄+〉ei〈k,θ〉 .

From the second and the third equations in (4.3.8), we see that F k10, F k01, F k20, F k11,

F k02 satisfy the corresponding equations in (4.3.7).

2

Let

O+ =


ξ ∈ O :

|〈k, ω〉−1| ≤ |k|
τ

γ , k 6= 0

‖(〈k, ω〉I + Ã)−1‖ ≤ K4
+
|k|τ
γ ,

‖(〈k, ω〉I + Ã⊗ I + I ⊗ Ã)−1‖ ≤ K8
+
|k|τ
γ ,

‖(〈k, ω〉I + Ã⊗ I − I ⊗ Ã)−1‖ ≤ K8
+
|k|τ
γ , k 6= 0


,

then the first three equations in (4.3.7) can be solved in this region. Solvability of the

remaining equations in (4.3.7) is a consequence of the following elementary result from

matrix theory.

Lemma 4.3.2 Let A,B,C be n × n, m ×m and n ×m matrices, respectively, and let X

be a n×m unknown matrix. Then the matrix equation

AX −XB = C , (4.3.9)
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is solvable if and only if Im ⊗A−B ⊗ In is nonsingular. Moreover,

‖X‖ ≤ ‖(Im ⊗A−B ⊗ In)−1‖ · ‖C‖ . (4.3.10)

Proof. See [68, 106].

2

Note that (F k20)> satisfies the same equation as F k20, thus, by uniqueness of solutions,

F k20 = (F k20)>; similarly, F k02 = (F k02)>.

Observe that, taking the conjugate transpose of the fourth equation in (4.3.7) and

replacing k with −k one obtains

(F (−k)20)>(〈−k, ω〉I − (Ã)>)− (Ã)>(F (−k)20)> = (−i)(R(−k)20)> , (4.3.11)

i.e.,

(F (−k)20)>(〈k, ω〉I + (Ã)>) + (Ã)>(F (−k)20)> = i(R(−k)20)> , (4.3.12)

so

(〈k, ω〉I + (Ã)>)(F (−k)20)> + (F (−k)20)>(Ã)> = i(R(−k)20)> , (4.3.13)

and using the fact that (Ã)> = Ã, (F (−k)20)> = F (−k)20 and (R(−k)20)> = (Rk02)> = Rk02,

it follows that

(〈k, ω〉I + Ã)F (−k)20 + F (−k)20Ã = iRk02 ; (4.3.14)

i.e., F (−k)20 satisfies the same equation as F k02, thus F (−k)20 = F k02.

If we now take the conjugate transpose of the fifth equation in (4.3.7) and replace k

with −k,

(F (−k)11)>(〈−k, ω〉I + (Ã)>)− (Ã)>(F (−k)11)> = (−i)(R(−k)11)> ,

i.e.,

(F (−k)11)>(〈k, ω〉I − (Ã)>) + (Ã)>(F (−k)11)> = i(R(−k)11)> , (4.3.15)

so

(〈k, ω〉I + (Ã)>)(F (−k)11)> − (F (−k)11)>(Ã)> = i(R(−k)11)> , (4.3.16)

87



and since (Ã)> = Ã and (R(−k)11)> = Rk11,

(〈k, ω〉I + Ã)(F (−k)11)> − (F (−k)11)>Ã = iRk11 ; (4.3.17)

i.e., (F (−k)11)> satisfies the same equation as F k11, thus (F (−k)11)> = F k11. In an entirely

analogous way one can also show that also F(−k)l = Fkl, F (−k)10 = F k01, F (−k)01 = F k10

and F (−k)02 = F k20, thus

F̄ = F . (4.3.18)

We are now going to estimate the norm of XF and the order Φ1
F , to this end, we will need

the following

Lemma 4.3.3 Let A = (aij(ξ))K×K be an invertible matrix depending differentiably on a

parameter ξ ∈ O, and ‖A−1‖ ≤ L, ‖∂ξA‖ ≤M , then

‖∂ξA−1‖ ≤ L2M . (4.3.19)

Proof. Since AA−1 = I, then (∂ξA)A−1 + A(∂ξA−1) = 0, hence ∂ξA−1 = −A−1(∂ξA)A−1,

thus

‖∂ξA−1‖ ≤ ‖A−1‖2‖∂ξA‖ ≤ L2M . (4.3.20)

2

Lemma 4.3.4 Let Di = D(r+ + i
4(r − r+), i4s), 0 < i ≤ 4. If

C1) K18
+ ≤ ε−

1
4 ,

then there is a constant c2 > 0 such that

‖XF ‖D3,O+ ≤ c2γ
−2(r − r+)−(2τ+N+1)ε

3
4 .

Proof. From the definition of O+ we see that

sup
ξ∈O+

‖∂ξ〈k, ω〉‖ ≤ |k| ,

sup
ξ∈O+

‖∂ξ(〈kω〉I + Ã)‖ ≤ (|k|+K+) ,

sup
ξ∈O+

‖∂ξ(〈k, ω〉I + Ã⊗ I + I ⊗ Ã)‖ ≤ (|k|+K2
+) ,

sup
ξ∈O+

‖∂ξ(〈k, ω〉I + Ã⊗ I − I ⊗ Ã)‖ ≤ (|k|+K2
+) .
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Then, according to Lemma 4.3.3, Lemma 4.3.1 and Lemma 4.3.2, we have

|Fkl|O+ ≤ |〈k, ω〉|−2|k||P̆kl|O+ ≤ γ−2|k|2τ+1|P̆kl|O+ k 6= 0, |l| ≤ 1 ,

‖F kij‖O+ ≤ γ−2K9
+|k|2τ+1‖Rkij‖O+ , i 6= j, 1 ≤ i+ j ≤ 2 ,

‖F k11‖O+ ≤ γ−2K18
+ |k|2τ+1‖Rk11‖O+ (k 6= 0) .

It follows that

1
s2
‖Fθ‖D3,O+ ≤ 1

s2
(
∑
k,|l|≤1

|Fkl| · s2|l| · |k| · e|k|(r−
1
4

(r−r+)) +

∑
1≤i+j≤2

∑
k

(‖F kij‖ · ‖z+‖) · |k| · e|k|(r−
1
4

(r−r+))

≤
γ−2K18

+

s2
(
∑
k,|l|≤1

|P̆kl| · s2|l| · |k|2τ+2 · e|k|(r−
1
4

(r−r+)) +

∑
1≤i+j≤2

∑
k

(‖Rkij‖ · ‖z+‖) · |k|2τ+2 · e|k|(r−
1
4

(r−r+)))

≤ c3γ
−2(r − r+)−(2τ+N+1)K18

+ ‖XR‖

≤ c3γ
−2(r − r+)−(2τ+N+1)ε

3
4 .

A similar derivation yields,

‖FI‖D3,O+ =
∑
|l|=1

|Fkl|e|k|(r−
1
4

(r−r+)) ≤ c4γ
−2(r − r+)−(2τ+N+1)ε

3
4 .

‖XF1‖D3,O+ ≤
1
s

(
∑
n

‖F1wn‖+
∑
n

‖F1w̄n‖) ≤
1
s

(‖F1z+
‖+ ‖F1z̄+

‖)

≤ c5γ
−2(r − r+)−(2τ+N+1)K10

+ ‖XR1‖ ≤ c5γ
−2(r − r+)−(2τ+N+1)ε

3
4 .

‖XF2‖D3,O+ ≤
1
s

(
∑
n

‖F2wn‖+
∑
n

‖F2w̄n‖) ≤
1
s

(‖F2z+
‖+ ‖F2z̄+

‖)

≤ c6γ
−2(r − r+)−(2τ+N+1)K10

+ ‖XR2‖ ≤ c6γ
−2(r − r+)−(2τ+N+1)ε

3
4 .

Putting together the estimates above, Lemma 4.3.4 follows.

2

Now let Diη = D(r+ + i
4(r − r+), i4ηs) = , 0 < i ≤ 4 .

Lemma 4.3.5 If
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C2) c2γ
−2(r − r+)−(2τ+N+1)ε

1
2 < 1 ,

then

Φt
F : D2η → D3η , −1 ≤ t ≤ 1 , (4.3.21)

and moreover,

‖DΦt
F − Id‖D1η < c7γ

−2(r − r+)−(2τ+N+1)ε
3
4 . (4.3.22)

Proof. Let

‖DmF‖D,O+ = max


∥∥∥∥∥ ∂|i|+|l|+|α|+|β|F

∂θi∂I l∂(z+)α∂(z̄+)β

∥∥∥∥∥
D,O+

: |i|+ |l|+ |α|+ |β| = m ≥ 2

 .

We note that F is a polynomial of order 1 in I and of order 2 in z+, z̄+. It thus follows

from Lemma 4.3.4 and Cauchy’s inequality (lemma A.0.6 in Appendix A) that

‖DmF‖D2,O+ < c8γ
−2(r − r+)−(2τ+N+1)ε

3
4 ,

for any m ≥ 2 .

Using the integral equation

Φt
F = id +

∫ t

0
XF ◦ Φs

F ds

and Lemma 4.3.4, one can see that Φt
F : D2η → D3η , −1 ≤ t ≤ 1 . Indeed,

DΦt
F = Id+

∫ t

0
(DXF )DΦs

F ds = Id+
∫ t

0
J(D2F )DΦs

F ds ,

where J denotes the standard symplectic matrix. Let c7 = 2c8, it thus follows that

‖DΦt
F − Id‖ ≤ 2‖D2F‖ ≤ c7γ

−2(r − r+)−(2τ+N+1)ε
3
4 .

2

4.3.4 The new Hamiltonian

Let Φ = Φ1
F , s+ = 1

8ηs , D+ = D(r+, s+) and

N+ = e+ + 〈ω+, I〉+ 〈A+z+, z̄+〉+
∑
|n|>K+

βwnw̄n ,

P+ = P̆+ + Ṕ0 + P̀0 ,
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where

e+ = e+ P̆00 ,

ω+ = ω + P̆0l(|l| = 1) ,

A+ = Ã+R011 ,

z+ = (· · · , wn, · · · )|n|≤K+
, z̄+ = (· · · , w̄n, · · · )|n|≤K+

,

P̆+ =
∫ 1

0
{(1− t){N , F}+R,F} ◦ Φt

F dt+ (P̆ −R) ◦ Φ1
F +∫ 1

0
{Ṕ0 + P̀0, F} ◦ Φt

F dt .

Thus, Φ : D+ ×O+ → D and, by Taylor’s second-order formula,

H+ ≡ H ◦ Φ = (N +R) ◦ Φ + (P −R) ◦ Φ

= N + {N , F}+R+
∫ 1

0
(1− t){{N , F}, F} ◦ Φt

F dt +∫ 1

0
{R,F} ◦ Φt

F dt+ (P̆ −R) ◦ Φ1
F + (Ṕ0 + P̀0) ◦ Φ1

F

= N + {N , F}+R+ P̆+ + Ṕ0 + P̀0

= N+ + P+ + {N , F}+R− P̆00 − 〈ω′, I〉 − 〈R011z+, z̄+〉

= N+ + P+ .

We will now show that H+ has properties similar to those of H.

Observe that, since (Ã)> = Ã and (R011)> = R011, then (A+)> = A+, i.e., A+ is a

Hermitian matrix. Then, from the assumptions on P̆ , we have that there is a constant

c9 > 0 such that

|ω+ − ω|O+ ≤ c9ε , ‖A+ − Ã‖O+ ≤ c9ε .

It thus follows that, if

C3) c9K
τ+5
+ ε < γ − γ+ ,
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then whenever |k| ≤ K+,

|〈k, ω + P0l〉−1| ≤ |〈k, ω〉−1|
1− |〈k, ω〉−1|c9|k|ε

≤ |k|
τ

γ+
, k 6= 0 ,

‖(〈k, ω + P0l〉I +A+)−1‖ ≤ ‖(〈k, ω〉I + Ã)−1‖
1− ‖(〈k, ω〉I + Ã)−1‖c9|k|ε

≤ K4
+

|k|τ

γ+
,

‖(〈k, ω + P0l〉I +A+ ⊗ I + I ⊗A+)−1‖ ≤ ‖(〈k, ω〉I + Ã⊗ I + I ⊗ Ã)−1‖
1− ‖(〈k, ω〉I + Ã⊗ I + I ⊗ Ã)−1‖c9|k|ε

≤ K8
+

|k|τ

γ+
,

‖(〈k, ω + P0l〉I +A+ ⊗ I − I ⊗A+)−1‖ ≤ ‖(〈k, ω〉I + Ã⊗ I − I ⊗ Ã)−1‖
1− ‖(〈k, ω〉I + Ã⊗ I − I ⊗ Ã)−1‖c9|k|ε

≤ K8
+

|k|τ

γ+
, k 6= 0 .

The above implies that, in the next KAM step, small denominator conditions are automat-

ically satisfied when |k| ≤ K+ .

Let R(t) = (1− t)(N+ −N ) + tR, then P+ can be rewritten as

P+ =
∫ 1

0
(1− t){{N , F}, F} ◦ Φt

F dt +
∫ 1

0
{R,F} ◦ Φt

Fdt+ (P −R) ◦ Φ1
F

=
∫ 1

0
{R(t), F} ◦ Φt

F dt+ (P −R) ◦ Φ1
F ,

hence

XP+ =
∫ 1

0
(Φt

F )∗X{R(t),F} dt + (Φ1
F )∗X(P−R) .

Now, by Lemma 4.3.5, if

C4) c7γ
−2(r − r+)−(2τ+N+1)ε

3
4 ≤ 1,

then

‖DΦt
F ‖D1η ≤ 1 + ‖DΦt

F − I‖D1η ≤ 2 , −1 ≤ t ≤ 1 .

Furthermore, by Lemma A.0.8 (cf. Appendix A) and (4.3.5), we also have

‖X{R(t),F}‖D2η ≤ c10γ
−2(r − r+)−(2τ+N+1)η−2ε

7
4 ,

‖X(P−R)‖D2η ≤ c1 ε
5
4 .
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Let c0 = max{c1, · · · , c10, c11, c12}, where c11, c12 will be defined later on, and let

ε+ = 4c0γ
−2(r − r+)−(2τ+N+1)ε

5
4 ,

then

‖XP+‖D+,O+ ≤ 2c1ε
5
4 + 2c10γ

−2(r − r+)−(2τ+N+1)ε
5
4 ≤ ε+ .

The reality condition of P+ is verified easily because, if F satisfies F̄ = F and G satisfies

Ḡ = G, then their Poisson bracket {F,G} also satisfies {F,G} = {F ,G} = {F,G}.

We now examine the decay property of P̆+. More precisely, let us write

P̆+ = P̆+(θ, I, z+, z̄+, ξ) +
∑

|n|>K+,αn+βn≥1

P̆+
n (θ, I, z+, z̄+, ξ)wαnn w̄βnn ,

we will show that

‖P̆+
n (θ, I, z+, z̄+, ξ)‖D+,O+ ≤ e−(|n|−K+) , |n| > K+ .

Since F only involves the normal components wn, w̄n for |n| ≤ K+, so does {N , F}; there-

fore,
∫ 1

0 (1−t){{N , F}, F}◦Φt
F dt only involves the normal components wn, w̄n for |n| ≤ K+.

Now, recall that

P̀0 =
∑
n

O(|wn|3) ,

thus {P̀0, F} also only involves normal components wn, w̄n for |n| ≤ K+ only; consequently,

the same is true about
∫ 1

0 {P̀0, F} ◦ Φt
F dt. Now, since R is a truncation of P̆ , in order to

establish the decay property above, it suffices to consider the following two terms, (P̆ −R)

and
∫ 1

0 {P̆ + Ṕ0, F} ◦ Φt
F dt; let us take the first term. Recall that

P̆ = P̆ (θ, I, z, z̄, ξ) +
∑
|n|>K

αn+βn≥1

P̆n(θ, I, z, z̄, ξ)wαnn w̄βnn ,

such that

‖P̆n(θ, I, z, z̄, ξ)‖D(r,s),O+
≤ e−(|n|−K) ,

and that

Ṕ0 =
∑
n 6=m

αn+βn,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ 0
nm(ξ)wαnn w̄βnn wαmm w̄βmm ,
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such that

‖Ṕ 0
nm(ξ)‖D(r,s),O+

≤ e−|n−m| .

Now remember that R only involves normal components wn, w̄n with |n| ≤ K+; there-

fore, terms corresponding to normal components wn, w̄n for |n| > K+ in P̆ − R are those

corresponding for |n| > K+ in P̆ , for which we already have the decay property

‖P̆n(θ, I, z, z̄, ξ)‖D(r+,s+),O+
≤ e−(|n|−K) ≤ e−(|n|−K+) .

It remains to obtain decay estimates for
∫ 1

0 {P̆ + Ṕ0, F}◦Φt
F dt. Once again, we only need to

consider terms corresponding to normal components wn, w̄n with |n| > K+; note however

that F is independent of such components and thus so will be∫ 1

0
{P̆ (θ, I, z, z̄, ξ) +

∑
K<|n|<K+
αn+βn≥1

P̆n(θ, I, z, z̄, ξ)wαnn w̄βnn , F} ◦ Φt
Fdt .

By the same token,∫ 1

0
{

∑
n6=m,|n|,|m|≤K+
αn+βn,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ 0
nm(ξ)wαnn w̄βnn wαmm w̄βmm , F} ◦ Φt

F dt

is independent of normal components wn, w̄n for |n| > K+. It only remains to consider the

following terms ∫ 1

0
{
∑
|n|>K

αn+βn≥1

P̆n(θ, I, z, z̄, ξ)wαnn w̄βnn , F} ◦ Φt
F dt

=
∫ 1

0

∑
|n|>K

αn+βn≥1

{P̆n(θ, I, z, z̄, ξ), F} ◦ Φt
Fw

αn
n w̄βnn dt

=
∑
|n|>K

αn+βn≥1

(
∫ 1

0
{P̆n(θ, I, z, z̄, ξ), F} ◦ Φt

F dt)w
αn
n w̄βnn , (4.3.23)
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and ∫ 1

0
{

∑
n 6=m,|n|>K+,|m|≤K+
αn+βn,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ 0
nm(ξ)wαnn w̄βnn wαmm w̄βmm , F} ◦ Φt

F dt

=
∫ 1

0

∑
|n|>K+

{
∑
|m|≤K+

αn+βn,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ 0
nm(ξ)wαmm w̄βmm , F} ◦ Φt

Fw
αn
n w̄βnn dt

=
∑
|n|>K+

(
∫ 1

0
{

∑
|m|≤K+

αn+βn,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ 0
nm(ξ)wαmm w̄βmm , F} ◦ Φt

F dt)w
αn
n w̄βnn .(4.3.24)

Let

P̃n = P̆n(θ, I, z, z̄, ξ) +
∑
|m|≤K+

αn+βn,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ 0
nm(ξ)wαmm w̄βmm .

We will combine (4.3.23) and (4.3.24) to obtain the decay property of

∑
|n|>K+,αn+βn≥1

(
∫ 1

0
{P̃n, F} ◦ Φt

F dt)w
αn
n w̄βnn .

By relaxing decay properties of e−(|n|−K), e−|n−m| to e−(|n|−K+) we have, by Lemma A.0.7

(see appendix A), that

‖{P̃n, F}‖D(r−σ, 1
2
s) ≤ c11γ

−2(r − r+)−(2τ+N+1)σ−1s−2ε
3
4 e−(|n|−K+) .

It follows by a Cauchy estimate (cf. lemma 4.5.3, Appendix A) that

‖X{P̃n,F}‖D(r−2σ, 1
4
s) ≤ c12γ

−2(r − r+)−(2τ+N+1)σ−2s−4ε
3
4 e−(|n|−K+) ;

therefore, by Lemma 4.3.5, if

C5) c11γ
−2(r − r+)−(2τ+N+1)η−2ε

3
4 ≤ 1

2 ,

C6) c12c2(γ−2(r − r+)−(2τ+N+1)η−2ε
3
4 )2 ≤ 1

2 ,
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then ∥∥∥∥∫ 1

0
{P̃n, F} ◦ Φt

F dt

∥∥∥∥
D(r+,s+)

≤ ‖{P̃n, F} ◦ Φt
F ‖D(r+,s+)

≤ ‖{P̃n, F}‖D(r+,s+) + ‖{P̃n, F} ◦ Φt
F − {P̃n, F}‖D(r+,s+)

≤ ‖{P̃n, F}‖D(r+,s+) + ‖X{P̃n,F}‖D2η‖Φt
F − id‖D1η

≤ c11γ
−2(r − r+)−(2τ+N+1)η−2ε

3
4 e−(|n|−K+) +

c12c2(γ−2(r − r+)−(2τ+N+1)η−2ε
3
4 )2e−(|n|−K+)

≤ e−(|n|−K+) .

Remark 4.3.3 Note in this KAM step, the normal components wn, w̄n with K < |n| ≤ K+

are involved but, at this time, the perturbation is O(ε), which means

|wn| ∼ ε ∼ e−|n| .

Hence the breathers we obtained are exponentially localized in space. In [108] breathers

super–exponentially localized in space are obtained, the reason behind obtaining this type of

decay is that, in [108], a short-range coupling potential is considered, this translates into the

growth of the normal components being at most linear; in our work normal components grow

exponentially fast and thus breathers herein are exponentially localized in space. In fact, the

method developed here can also handle super-exponential growth of the normal components;

for example, if ‖P̆n‖ ≤ 1
|n|α , ‖Ṕnm‖ ≤ 1

|n−m|α , α > 1, then the breathers we would obtain

are localized in space like 1
|n|α (cf. [47]).

This completes one step of KAM iterations.

2

4.4 Proof of Theorem B

Let r0, s0, ε0, γ0,K0,O0, H0,N0,P0 be as given in the beginning of Section 3. For each

ν = 0, 1, · · · , we will label all index-free quantities by ν and all +-indexed quantities by
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ν + 1, in section 4.3. This defines, for all ν = 1, 2, · · · , the following sequences:

rν = r0(1−
ν+1∑
i=2

2−i) ,

εν = 4c0γ
−2
ν−1(rν−1 − rν)−(2τ+N+1)ε

5
4
ν−1 ,

γν = γ0(1−
ν+1∑
i=2

2−i) ,

sν =
1
8
ην−1sν−1 = 2−3ν(

ν−1∏
i=0

εi)
1
4 s0 , ην = ε

1
4
ν ,

Kν = 5Kν−1 ,

Dν = D(rν , sν) ,

D̃ν = D(rν+1 +
1
4

(rν − rν+1),
1
4
ηνsν) ,

Hν = H̄ν = Nν + Pν ,

Nν = N̄ν = eν + 〈ων(ξ), I〉+ 〈Aνzν , z̄ν〉+
∑
|n|>Kν

βwnw̄n ,

Oν =


ξ ∈ Oν−1 :

|〈k, ων−1〉−1| ≤ |k|τ
γν−1

(k 6= 0)

‖(〈k, ων〉I + Ãν−1)−1‖ ≤ K4
ν
|k|τ
γν−1

‖(〈k, ων−1〉I + Ãν−1 ⊗ I + I ⊗ Ãν−1)−1‖ ≤ K8
ν
|k|τ
γν−1

‖(〈k, ων−1〉I + Ãν−1 ⊗ I − I ⊗ Ãν−1)−1‖ ≤ K8
ν
|k|τ
γν−1

, k 6= 0


,

where

Ãν−1 =

 Aν−1 0

0 βI

 .

4.4.1 Iteration Lemma

The preceding analysis may be summarized as follows,

Lemma 4.4.1 Given γ sufficiently small, there exists ε sufficiently small, then the following

holds for all ν = 0, 1, · · · .

a) Hν is real analytic on Dν ×Oν ,

Nν = N̄ν = eν + 〈ων(ξ), I〉+ 〈Ãνzν+1, z̄ν+1〉+
∑

|n|>Kν+1

βwnw̄n ,

Pν = P̄ ν = P̆ν + Ṕ0 + P̀0 ,
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and moreover,

|ων+1 − ων |Oν ≤ c0εν ,

‖Ãν+1 − Ãν‖Oν ≤ c0εν ,

‖XP ν‖Dν ,Oν ≤ εν ,

P̆ν = P̆ ν(θ, I, zν , z̄ν , ξ) +
∑

|n|>Kν ,αn+βn≥1

P̆ νn (θ, I, zν , z̄ν , ξ)wαnn w̄βnn ,

Ṕ0 =
∑
n6=m

αn+βn,αm+βm≥1
αn+βn+αm+βm≥3

Ṕ 0
nm(ξ)wαnn w̄βnn wαmm w̄βmm ,

P̀0 =
∑
n

O(|wn|3) ,

with

‖P̆ νn (θ, I, zν , z̄ν , ξ)‖Dν,Oν ≤ e
−(|n|−Kν) and ‖Ṕ 0

nm(ξ)‖Dν,Oν ≤ e
−|n−m| .

b) There is a symplectic transformation

Φν : D̃ν ×Oν+1 → Dν

such that

‖DΦν − I‖Dν×Oν+1
≤ εν

and

Hν+1 = H̄ν+1 = Hν ◦ Φν .

Proof. It is suffices to verify conditions C0)–C6) for all ν = 0, 1, · · · .

By induction, suppose the lemma holds for some ν−1, then it is not difficult to see that

one can make γ = γ0 small enough so that

sν =
1
8
ην−1sν−1 <

1
8
ε

5
4
ν−1 < εν ,

hence C0) holds for all ν.

Conditions C1-6) follow from the following two conditions,

D1) Kν+1 ≤ ε
− 1

80
ν ,
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D2) c0γ
−2
ν (rν − rν+1)−(2τ+N+1)ε

1
4
ν ≤ 1

2

for all ν = 0, 1, · · · .

Let us first take ε (hence ε0) sufficiently small such that

ε0 < min{γ
10
0 r

5(2τ+N+1)
0

25(2τ+N+1)c5
0

(Ψ(r0))−1,
δ

2
} ,

where

Ψ(r0) =
∞∏
i=1

[(ri−1 − ri)−5(2τ+N+1)](
4
5

)i

which is easily seen to be well-defined. Then

c0γ
−2
0 (r0 − r1)−(2τ+N+1)ε

1
4
0 ≤

1
2

;

i.e., D2) holds for ν = 0. Now recall that K0 = ln ε
− 5

4
0 , then we see that D1) also holds for

ν = 0.

Using an induction argument, one can show that, in fact, for any ν ≥ 1,

c0γ
−2
ν (rν − rν+1)−(2τ+N+1)ε

1
4
ν = c0γ

−2
ν (rν − rν+1)−(2τ+N+1)

(4c0γ
−2
ν (rν−1 − rν)−(2τ+N+1)ε

5
4
ν−1)

1
4

≤ (24(2τ+N+1)c5
0γ
−10
ν (rν−1 − rν)−5(2τ+N+1)ε

5
4
ν−1)

1
4

≤ (24(2τ+N+1)c5
0γ
−10
0 Ψ(r0)ε0)

1
4

( 5
4

)ν

≤ (
r

5(2τ+N+1)
0

22τ+N+1
)

1
4

( 5
4

)ν ≤ 1
2
,

and

Kν+1 = 5ν+1K0 ≤ ε
− 1

80
ν ,

i.e., D1) and D2) hold true.

2

4.4.2 Convergence

Let Ψν = Φ0 ◦ Φ1 ◦ · · · ◦ Φν−1, ν = 1, 2, . . . . An induction argument shows that Ψν :

D̃ν ×Oν+1 → D0 and

H0 ◦Ψν = Hν = Nν + Pν
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for all ν = 1, 2, . . . .

Let Õ = ∩∞ν=0Oν , then (cf. Lemma 4.4.1 and [66, 79]) one can show that Hν , eν ,Nν ,Pν ,Ψν

and ων converge uniformly on D(1
2r0, 0) × Õ to, say, H∞, e∞, N∞, P∞, Ψ∞ and ω∞,

respectively, in which case it is clear that

N∞ = e∞ + 〈ω∞, I〉+ 〈A∞z∞, z̄∞〉 .

Since

εν = 4c0γ
−2
ν−1(rν−1 − rν)−(2τ+N+1)ε

5
4
ν−1 ≤ (4c0γ

−2
0 Ψ(r0)ε0)( 5

4
)ν ,

we have, by Lemma 4.4.1, that

XP∞ |D( 1
2
r0,0)×Õ ≡ 0 .

Let Φt
H denote the flow of any Hamiltonian vector field XH . Since H0 ◦Ψν = Hν , then

Φt
H0
◦Ψν = Ψν ◦ Φt

Hν . (4.4.1)

The uniform convergence of Ψν and XHν imply that one can pass the limit in the above

and conclude that

Φt
H0
◦Ψ∞ = Ψ∞ ◦ Φt

H∞ ,

on D(1
2r0, 0)× Õ. It thus follows that

Φt
H0

(Ψ∞(TN × {ξ})) = Ψ∞Φt
N∞(TN × {ξ}) = Ψ∞(TN × {ξ}) ,

for all ξ ∈ Õ. Hence Ψ∞(TN×{ξ}) is an embedded invariant torus of the original perturbed

Hamiltonian system at ξ ∈ Õ. The frequencies ω∞(ξ) associated with Ψ∞(TN × {ξ}) are

slightly deformed from the unperturbed ones, ω(ξ); moreover, the behavior in the normal

directions of the invariant tori Ψ∞(TN×{ξ}) are governed by their normal frequency matrix

A∞ = A∞(ξ), which is constant, from which their linear stability follows.

2
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4.4.3 Measure estimates

For each ν = 0, 1, 2, . . . , recall that, for |k| ≤ Kν+1, small denominator conditions are

automatically satisfied. For |k| > Kν+1, let us consider the most complicated case, 〈k, ων〉I+

Ãν⊗I−I⊗Ãν . Because Ãν is Hermitian with dim(Ãν) ≤ Kν+1, then 〈k, ων〉I+Ãν⊗I−I⊗Ãν

is also Hermitian with dim(〈k, ων〉I+ Ãν ⊗ I− I⊗ Ãν) ≤ K2
ν+1. Now consider the following

simple

Lemma 4.4.2 Let µ1, · · · , µK be the eigenvalues of a Hermitian matrix A and let P with

P̄>P = I be such that A = P>ΛP , with Λ = (µj)1≤j≤K . Let

min{|µ1|, · · · , |µK |} ≥ l ,

then

‖A−1‖ ≤ K2

l
.

Proof. since P̄>P = I, then ‖P‖ ≤ K and thus

‖A−1‖ ≤ ‖P‖2‖Λ−1‖ ≤ K2

l
.

Let µ be an eigenvalue of (〈k, ων〉I + Ãν ⊗ I − I ⊗ Ãν) then, according to Lemma 4.4.2, as

long as |µ| ≥ γν
|k|τ one will have that

‖(〈k, ων〉I + Ãν ⊗ I − I ⊗ Ãν)−1‖ ≤ K8
ν+1

|k|τ

γν
.

As a consequence of the above, we need to exclude the following parameter set

Rν1
k (γν) = {ξ ∈ Oν−1 : |µ| < γν

|k|τ
} .

For the same reason, we will also have to exclude the following parameter sets associated

to eigenvalues ζ and λ of (〈k, ων〉I + Ãν) and (〈k, ων〉I + Ãν ⊗ I + I ⊗ Ãν), respectively;

Rν2
k (γν) = {ξ ∈ Oν−1 : |〈k, ων〉| <

γν
|k|τ
} ,

Rν3
k (γν) = {ξ ∈ Oν−1 : |ζ| < γν

|k|τ
} ,

Rν4
k (γν) = {ξ ∈ Oν−1 : |λ| < γν

|k|τ
} .
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Then, the following is true for all ν = 0, 1, 2, . . . ,

Oν ⊆ Oν−1\{(
⋃

|k|>Kν+1

Rν1
k (γν)}

⋃
{

⋃
|k|>Kν+1

Rν2
k (γν)}

⋃
{

⋃
|k|>Kν+1

Rν3
k (γν)}

⋃
{

⋃
|k|>Kν+1

Rν4
k (γν))} ,

Now consider the resonant sets

Rν = {
⋃

|k|>Kν+1

Rν1
k (γν)}

⋃
{

⋃
|k|>Kν+1

Rν2
k (γν)}

⋃
{

⋃
|k|>Kν+1

Rν3
k (γν)}

⋃
{

⋃
|k|>Kν+1

Rν4
k (γν)} ,

It is clear that

O \ Õ ⊆
⋃
ν≥0

Rν .

Lemma 4.4.3 For fixed k and ν, there is a constant C1 > 0 such that

∣∣∣(Rν1
k (γν)

⋃
Rν2
k (γν)

⋃
Rν3
k (γν)

⋃
Rν4
k (γν)

∣∣∣ ≤ C1
γ

|k|τ−1
.

Proof. Let µ be an eigenvalue of (〈k, ων〉I + Ãν ⊗ I − I ⊗ Ãν), which is Hermitian. Then

there is an eigenvector ψ with 〈ψ,ψ〉 = (ψ̄)>ψ = 1, such that

µ = 〈(〈k, ων〉I + Ãν ⊗ I − I ⊗ Ãν)ψ,ψ〉 ,

so that

∂ξµ = 〈∂ξ(〈k, ων〉I + Ãν ⊗ I − I ⊗ Ãν)ψ,ψ〉 .

Thus

|∂ξµ| ≥ |〈∂ξ(〈k, ω0〉+ β − β)ψ,ψ〉| − ε0|k| ≥
δ|k|
2

.

The cases for Rν2
k (γν), Rν3

k (γν), Rν4
k (γν) can be handled in an entirely analogous way. Thus

lemma 4.4.3 is proven.

2

Lemma 4.4.4 ∣∣∣O \ Õ∣∣∣ ≤
∣∣∣∣∣∣
⋃
ν≥0

Rν
∣∣∣∣∣∣ = O(γ) .
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Proof. Let τ ≥ N + 2, by Lemma 4.4.3, we have that

∣∣∣O \ Õ∣∣∣ ≤
∣∣∣∣∣∣(
⋃
ν≥0

Rν
∣∣∣∣∣∣ = O(

∑
ν≥0

∑
|k|>Kν+1

γ

|k|τ−1
) = O(

∑
ν≥0

γ

Kν+1
) = O(γ) .

2

And this completes the measure estimate and thus the proof of theorem B.
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APPENDIX A

Lemma A.0.5

‖FG‖D(r,s),O ≤ ‖F‖D(r,s),O‖G‖D(r,s),O .

Proof. Since

(FG)klαβ =
∑

k′,l′,α′,β′

Fk−k′,l−l′,α−α′,β−β′Gk′l′α′β′ ,

one has that

‖FG‖D(r,s),O = sup
‖w‖<s
‖w̄‖<s

∑
k,l,α,β

|(FG)klαβ|s2l|wα||w̄β|e|k|r

≤ sup
‖w‖<s
‖w̄‖<s

∑
k,l,α,β

∑
k′,l′,α′,β′

|Fk−k′,l−l′,α−α′,β−β′Gk′l′α′β′ |s2l|wα||w̄β|e|k|r

≤ ‖F‖D(r,s),O‖G‖D(r,s),O .

2

Lemma A.0.6 (Generalized Cauchy inequalities)

‖Fθ‖D(r−σ,s) ≤
1
σ
‖F‖D(r,s) ,

‖FI‖D(r, 1
2
s) ≤

4
s2
‖F‖D(r,s) ,

‖Fw‖D(r, 1
2
s) ≤

2
s
‖F‖D(r,s) ,

‖Fw̄‖D(r, 1
2
s) ≤

2
s
‖F‖D(r,s) .

Proof. See [79].

Let {F,G} denote the Poisson bracket of smooth functions F and G; i.e.,

{F,G} = 〈∂F
∂I

,
∂G

∂θ
〉 − 〈∂F

∂θ
,
∂G

∂I
〉+ i

∑
n

(
∂F

∂wn

∂G

∂w̄n
− ∂F

∂w̄n

∂G

∂wn
) .

Lemma A.0.7 There exists a constant c > 0 such that if

‖Fn‖D(r,s) < e−|n| , ‖G‖D(r,s) < ε ,

then

‖{Fn, G}‖D(r−σ, 1
2
s) < cσ−1s−2‖Fn‖D(r,s)‖G‖D(r,s) ≤ cσ−1s−2εe−|n| .
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Proof. By LemmaA.0.5 and LemmaA.0.6,

‖〈FnI , Gθ〉‖D(r−σ, 1
2
s) < 4σ−1s−2‖Fn‖ · ‖G‖ ,

‖〈Fnθ , GI〉‖D(r−σ, 1
2
s) < cσ−1s−2‖Fn‖ · ‖G‖ ,

‖
∑
m

FnwmGw̄m‖D(r, 1
2
s) ≤

∑
m

‖Fnwm‖D(r, 1
2
s)‖Gw̄m‖D(r, 1

2
s)

≤ ‖Fnw‖D(r, 1
2
s)‖Gw̄‖D(r, 1

2
s)

≤ 4s−2‖Fn‖ · ‖G‖,

‖
∑
m

Fnw̄mGwm‖D(r, 1
2
s) ≤

∑
m

‖Fnw̄m‖D(r, 1
2
s)‖Gwm‖D(r, 1

2
s)

≤ ‖Fnw̄‖D(r, 1
2
s)‖Gw‖D(r, 1

2
s)

≤ 4s−2‖Fn‖ · ‖G‖ .

It follows that

‖{Fn, G}‖D(r−σ, 1
2
s) < cσ−1s−2‖Fn‖D(r,s)‖G‖D(r,s) ≤ cσ−1s−2εe−|n| .

2

Lemma A.0.8 There exists a constant c > 0 such that if

‖XF ‖D(r,s) < ε′ , ‖XG‖D(r,s) < ε′′ ,

for some ε′, ε′′ > 0, then

‖X{F,G}‖D(r−σ,ηs) < cσ−1η−2ε′ε′′ ,

for any 0 < σ < r and 0 < η � 1. In particular, if η ∼ ε
1
4 , ε′ ∼ ε, ε′′ ∼ ε

3
4 , then

‖X{F,G}‖D(r−σ,ηs) ∼ ε
5
4 .

Proof. See [49].

2
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APPENDIX B

This brief appendix details the first of a set of canonical transformations that wrote our

Hamiltonian (4.1.1) in action-angle-normal coordinates. First recall that, for simplicity, we

have set p = 3, so that

H =
∑
n∈J

(
p2
n

2
+ Vn(qn)) +

∑
n∈Z1

(
p2
n

2
+
β2q2

n

2
+O(|qn|3)) + ε

∑
m 6=n

1
3
Cm,n(qm − qn)3 .

We fix N ∈ Z+, a set of indices J = {n1, . . . , nN} and a compact interval I ⊂ R+, possibly

depending on J and contained in a sufficiently small neighborhood of the origin so that, for

every h ∈ I and nj ∈ J , p2

2 + Vnj (q) = h defines a simple and closed curve, Γj(h), around

the origin in the pq-plane.

For every j = 1, . . . , N , let

ρj(h) def=
1

2π

∮
Γj(h)

p dq .

It follows from this definition and from hypotheses (V1) (Vn(0) = V ′n(0) = 0 and V ′′n (0) =

β2

2 > 0, ∀n ∈ Z) and (V2) (ρ′j(h) 6= 0 and ρ′′j (h) 6= 0 for all h ∈ I) that we can assume,

without any loss in generality, that ρj(h) > 0 for all h ∈ I and that ρj is a diffeomorphism

over I; so let H0,j : R+ → I be its inverse, thus

p2

2
+ Vnj (q) = H0,j(ρ) , j = 1, . . . , N .

Consider for the moment j ∈ {1, . . . , N} fixed. Then, for any given ρ and q sufficiently

small (say, 0 < r̃0 ≤ ρ ≤ r̃1, where 0 < r̃0 � 1), there exists a unique Γ′j , clockwise-oriented

arc of Γj that joins the positive p-semiaxis with the point (q, p) (cf. figure 12).

Let us now define a generating function, S : (q, ρ) 7→ S(q, ρ) by

S(q, ρ) def=
∮

Γ′j

p dq .

and a map ψ0(ρ, θ) 7→ (p, q) given implicitly as follows,

θ =
∂S(q, ρ)
∂ρ

, p =
∂S(q, ρ)
∂q

.
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Figure 12: Construction of action-angle coordinates.

Note that dS|ρ=constant = p dq and thus S above is defined up to an integer multiple of

the area enclosed by Γj ; however, this integer multiple of the area does not enter in our

definition p = Sq(q, ρ, q) but it renders θ = Sρ(q, ρ) multivalued; nevertheless, one can show

that ∮
Γj

dθ = 2π

(cf. [4] p. 281). The above outlines the construction of action-angle variables (ρj , θj),

j = 1, . . . , N . Observe that dp∧dq = ∂2S
∂ρ∂qdρ∧dq and that dρ∧dθ = ∂2S

∂q∂ρdρ∧dq; therefore,

dp ∧ dq = dρ ∧ θ.

Finally, let Ψ be a map defined by

Ψ :

 (pn, qn) = ψ0(ρn, θn) n ∈ J

(pn, qn) = (
√
βv̄n,

1√
β
vn) n ∈ Z1

then it is clear that

∑
n∈J

dpn ∧ dqn +
∑
n∈Z1

dpn ∧ dqn =
N∑
j=1

dρj ∧ dθj +
∑
n∈Z1

dv̄n ∧ dvn ;

that is, Ψ is symplectic. Therefore,

H ◦Ψ =
N∑
j=1

H0,j(ρj) +
∑
n∈Z1

β

2
(v2
n + v̄2

n) +O(|vn|3) + ε
∑
m 6=n

1
3
Cm,n(qm − qn)3 ,

the last term must be understood as a function of (ρ, θ, v, v̄).
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[42] Fröhlich, J., Spencer, T., and Wayne, C. E., “An invariant torus for nearly
integrable Hamiltonian systems with infinitely many degrees of freedom,” in Stochastic
processes in classical and quantum systems (Ascona, 1985), vol. 262 of Lecture Notes
in Phys., pp. 256–268, Berlin: Springer, 1986.
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[78] Pöschel, J., “Small divisors with spatial structure in infinite-dimensional Hamilto-
nian systems,” Comm. Math. Phys., vol. 127, no. 2, pp. 351–393, 1990.
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