Chinese Journal of Mechanical Engineering | |
Multi-Objective Optimization of Fused Deposition Modeling for Mechanical Properties of Biopolymer Parts Using the Grey-Taguchi Method | |
Original Article | |
Kapil Kumar1  Hari Singh1  | |
[1] Department of Mechanical Engineering, National Institute of Technology, 136119, Kurukshetra, India; | |
关键词: Fused deposition modeling; Mechanical properties; Taguchi method; ANOVA; Grey relational analysis; SEM; | |
DOI : 10.1186/s10033-023-00847-z | |
received in 2022-04-03, accepted in 2023-01-10, 发布年份 2023 | |
来源: Springer | |
【 摘 要 】
The urgent need to develop customized functional products only possible by 3D printing had realized when faced with the unavailability of medical devices like surgical instruments during the coronavirus-19 disease and the on-demand necessity to perform surgery during space missions. Biopolymers have recently been the most appropriate option for fabricating surgical instruments via 3D printing in terms of cheaper and faster processing. Among all 3D printing techniques, fused deposition modelling (FDM) is a low-cost and more rapid printing technique. This article proposes the fabrication of surgical instruments, namely, forceps and hemostat using the fused deposition modeling (FDM) process. Excellent mechanical properties are the only indicator to judge the quality of the functional parts. The mechanical properties of FDM-processed parts depend on various process parameters. These parameters are layer height, infill pattern, top/bottom pattern, number of top/bottom layers, infill density, flow, number of shells, printing temperature, build plate temperature, printing speed, and fan speed. Tensile strength and modulus of elasticity are chosen as evaluation indexes to ascertain the mechanical properties of polylactic acid (PLA) parts printed by FDM. The experiments have performed through Taguchi's L27 orthogonal array (OA). Variance analysis (ANOVA) ascertains the significance of the process parameters and their percent contributions to the evaluation indexes. Finally, as a multi-objective optimization technique, grey relational analysis (GRA) obtains an optimal set of FDM process parameters to fabricate the best parts with comprehensive mechanical properties. Scanning electron microscopy (SEM) examines the types of defects and strong bonding between rasters. The proposed research ensures the successful fabrication of functional surgical tools with substantial ultimate tensile strength (42.6 MPa) and modulus of elasticity (3274 MPa).
【 授权许可】
CC BY
© The Author(s) 2023
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202305153586461ZK.pdf | 2176KB | download | |
MediaObjects/13011_2023_522_MOESM1_ESM.pdf | 144KB | download | |
Fig. 1 | 2945KB | Image | download |
Fig. 1 | 411KB | Image | download |
Fig. 6 | 1010KB | Image | download |
Fig. 4 | 1732KB | Image | download |
MediaObjects/13045_2023_1400_MOESM1_ESM.xlsx | 27KB | Other | download |
13690_2023_1029_Article_IEq12.gif | 1KB | Image | download |
Fig. 3 | 91KB | Image | download |
MediaObjects/42004_2023_840_MOESM3_ESM.rar | 41KB | Other | download |
MediaObjects/12936_2023_4441_MOESM5_ESM.xlsx | 82KB | Other | download |
Fig. 3 | 2451KB | Image | download |
Fig. 1 | 407KB | Image | download |
MediaObjects/13045_2019_773_MOESM1_ESM.docx | 807KB | Other | download |
Fig. 1 | 76KB | Image | download |
Fig. 2 | 3053KB | Image | download |
Fig. 1 | 409KB | Image | download |
MediaObjects/10194_2023_1551_MOESM1_ESM.docx | 762KB | Other | download |
Fig. 4 | 2590KB | Image | download |
Fig. 1 | 132KB | Image | download |
Fig. 2 | 208KB | Image | download |
Fig. 6 | 334KB | Image | download |
Fig. 3 | 101KB | Image | download |
Fig. 1 | 139KB | Image | download |
Fig. 1 | 465KB | Image | download |
Fig. 2 | 29KB | Image | download |
Fig. 12 | 1246KB | Image | download |
12936_2023_4464_Article_IEq7.gif | 1KB | Image | download |
Fig. 10 | 79KB | Image | download |
Fig. 1 | 176KB | Image | download |
Fig. 5 | 212KB | Image | download |
Fig. 2 | 933KB | Image | download |
12936_2023_4464_Article_IEq13.gif | 1KB | Image | download |
Fig. 12 | 108KB | Image | download |
MediaObjects/42004_2023_817_MOESM5_ESM.cif | 1563KB | Other | download |
Fig. 13 | 275KB | Image | download |
Fig. 1 | 85KB | Image | download |
Fig. 9 | 660KB | Image | download |
40517_2023_248_Article_IEq1.gif | 1KB | Image | download |
40517_2023_248_Article_IEq2.gif | 1KB | Image | download |
40517_2023_248_Article_IEq3.gif | 1KB | Image | download |
40517_2023_248_Article_IEq4.gif | 1KB | Image | download |
【 图 表 】
40517_2023_248_Article_IEq4.gif
40517_2023_248_Article_IEq3.gif
40517_2023_248_Article_IEq2.gif
40517_2023_248_Article_IEq1.gif
Fig. 9
Fig. 1
Fig. 13
Fig. 12
12936_2023_4464_Article_IEq13.gif
Fig. 2
Fig. 5
Fig. 1
Fig. 10
12936_2023_4464_Article_IEq7.gif
Fig. 12
Fig. 2
Fig. 1
Fig. 1
Fig. 3
Fig. 6
Fig. 2
Fig. 1
Fig. 4
Fig. 1
Fig. 2
Fig. 1
Fig. 1
Fig. 3
Fig. 3
13690_2023_1029_Article_IEq12.gif
Fig. 4
Fig. 6
Fig. 1
Fig. 1
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]