期刊论文详细信息
BMC Bioinformatics
A fair experimental comparison of neural network architectures for latent representations of multi-omics for drug response prediction
Research
Stefan Kramer1  Tony Hauptmann1 
[1] Department of Computer Science, Johannes Gutenberg University Mainz, Mainz, Germany;
关键词: Deep learning;    Multi-omics;    Machine learning;    Drug response;    Neural network;    Autoencoder;   
DOI  :  10.1186/s12859-023-05166-7
 received in 2022-08-31, accepted in 2023-01-31,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundRecent years have seen a surge of novel neural network architectures for the integration of multi-omics data for prediction. Most of the architectures include either encoders alone or encoders and decoders, i.e., autoencoders of various sorts, to transform multi-omics data into latent representations. One important parameter is the depth of integration: the point at which the latent representations are computed or merged, which can be either early, intermediate, or late. The literature on integration methods is growing steadily, however, close to nothing is known about the relative performance of these methods under fair experimental conditions and under consideration of different use cases.ResultsWe developed a comparison framework that trains and optimizes multi-omics integration methods under equal conditions. We incorporated early integration, PCA and four recently published deep learning methods: MOLI, Super.FELT, OmiEmbed, and MOMA. Further, we devised a novel method, Omics Stacking, that combines the advantages of intermediate and late integration. Experiments were conducted on a public drug response data set with multiple omics data (somatic point mutations, somatic copy number profiles and gene expression profiles) that was obtained from cell lines, patient-derived xenografts, and patient samples. Our experiments confirmed that early integration has the lowest predictive performance. Overall, architectures that integrate triplet loss achieved the best results. Statistical differences can, overall, rarely be observed, however, in terms of the average ranks of methods, Super.FELT is consistently performing best in a cross-validation setting and Omics Stacking best in an external test set setting.ConclusionsWe recommend researchers to follow fair comparison protocols, as suggested in the paper. When faced with a new data set, Super.FELT is a good option in the cross-validation setting as well as Omics Stacking in the external test set setting. Statistical significances are hardly observable, despite trends in the algorithms’ rankings. Future work on refined methods for transfer learning tailored for this domain may improve the situation for external test sets. The source code of all experiments is available under https://github.com/kramerlab/Multi-Omics_analysis

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305151451024ZK.pdf 1638KB PDF download
Fig. 4 705KB Image download
13690_2023_1037_Article_IEq1.gif 1KB Image download
Fig. 2 2078KB Image download
Fig. 5 560KB Image download
MediaObjects/40249_2023_1061_MOESM6_ESM.pdf 396KB PDF download
Fig. 4 430KB Image download
MediaObjects/40249_2023_1061_MOESM7_ESM.pdf 390KB PDF download
MediaObjects/12864_2023_9162_MOESM2_ESM.html 3471KB Other download
MediaObjects/13750_2019_159_MOESM1_ESM.xlsx 32KB Other download
MediaObjects/42004_2023_840_MOESM3_ESM.rar 41KB Other download
Fig. 2 302KB Image download
1231KB Image download
MediaObjects/12936_2023_4441_MOESM5_ESM.xlsx 82KB Other download
Fig. 1 261KB Image download
Fig. 7 446KB Image download
40854_2022_440_Article_IEq15.gif 1KB Image download
MediaObjects/12936_2023_4441_MOESM7_ESM.docx 17KB Other download
Fig. 4 2187KB Image download
Fig. 3 4106KB Image download
Fig. 8 1218KB Image download
Fig. 2 1339KB Image download
Fig. 1 4561KB Image download
40854_2022_440_Article_IEq23.gif 1KB Image download
Fig. 7 2544KB Image download
Fig. 1 613KB Image download
Fig. 2 2654KB Image download
Fig. 4 982KB Image download
Fig. 1 33KB Image download
Fig. 22 53KB Image download
Fig. 2 34KB Image download
Fig. 1 118KB Image download
Fig. 1 1887KB Image download
MediaObjects/13750_2019_181_MOESM2_ESM.docx 20KB Other download
Fig. 9 428KB Image download
Fig. 1 185KB Image download
Fig. 3 2451KB Image download
Fig. 1 575KB Image download
MediaObjects/12951_2023_1782_MOESM1_ESM.pdf 819KB PDF download
Fig. 6 1077KB Image download
Fig. 4 481KB Image download
Fig. 1 407KB Image download
MediaObjects/13045_2019_773_MOESM1_ESM.docx 807KB Other download
Fig. 1 76KB Image download
Fig. 8 5277KB Image download
Fig. 2 94KB Image download
Fig. 2 609KB Image download
Fig. 1 107KB Image download
40517_2023_248_Article_IEq16.gif 1KB Image download
40854_2022_419_Article_IEq5.gif 1KB Image download
MediaObjects/42004_2023_833_MOESM3_ESM.docx 240017KB Other download
Fig. 3 74KB Image download
【 图 表 】

Fig. 3

40854_2022_419_Article_IEq5.gif

40517_2023_248_Article_IEq16.gif

Fig. 1

Fig. 2

Fig. 2

Fig. 8

Fig. 1

Fig. 1

Fig. 4

Fig. 6

Fig. 1

Fig. 3

Fig. 1

Fig. 9

Fig. 1

Fig. 1

Fig. 2

Fig. 22

Fig. 1

Fig. 4

Fig. 2

Fig. 1

Fig. 7

40854_2022_440_Article_IEq23.gif

Fig. 1

Fig. 2

Fig. 8

Fig. 3

Fig. 4

40854_2022_440_Article_IEq15.gif

Fig. 7

Fig. 1

Fig. 2

Fig. 4

Fig. 5

Fig. 2

13690_2023_1037_Article_IEq1.gif

Fig. 4

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  文献评价指标  
  下载次数:13次 浏览次数:4次