期刊论文详细信息
International Journal of Educational Technology in Higher Education
Integration of artificial intelligence performance prediction and learning analytics to improve student learning in online engineering course
Research Article
Fan Ouyang1  Mian Wu1  Liyin Zhang1  Luyi Zheng1  Pengcheng Jiao2 
[1] College of Education, Zhejiang University, 310058, Hangzhou, Zhejiang, China;Institute of Port, Coastal and Offshore Engineering, Ocean College, Zhejiang University, 316021, Zhoushan, Zhejiang, China;
关键词: Artificial intelligence in education (AIEd);    Academic performance prediction;    AI prediction models;    Collaborative learning;    Online higher education;   
DOI  :  10.1186/s41239-022-00372-4
 received in 2022-09-07, accepted in 2022-11-07,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

As a cutting-edge field of artificial intelligence in education (AIEd) that depends on advanced computing technologies, AI performance prediction model is widely used to identify at-risk students that tend to fail, establish student-centered learning pathways, and optimize instructional design and development. A majority of the existing AI prediction models focus on the development and optimization of the accuracy of AI algorithms rather than applying AI models to provide student with in-time and continuous feedback and improve the students’ learning quality. To fill this gap, this research integrated an AI performance prediction model with learning analytics approaches with a goal to improve student learning effects in a collaborative learning context. Quasi-experimental research was conducted in an online engineering course to examine the differences of students’ collaborative learning effect with and without the support of the integrated approach. Results showed that the integrated approach increased student engagement, improved collaborative learning performances, and strengthen student satisfactions about learning. This research made contributions to proposing an integrated approach of AI models and learning analytics (LA) feedback and providing paradigmatic implications for future development of AI-driven learning analytics.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305117535386ZK.pdf 1668KB PDF download
MediaObjects/41021_2022_257_MOESM2_ESM.pptx 113KB Other download
MediaObjects/12864_2023_9134_MOESM3_ESM.xlsx 25KB Other download
41116_2022_35_Article_IEq75.gif 1KB Image download
41116_2022_35_Article_IEq79.gif 1KB Image download
41116_2022_35_Article_IEq84.gif 1KB Image download
40854_2022_413_Article_IEq262.gif 1KB Image download
Fig. 4 167KB Image download
41116_2022_35_Article_IEq87.gif 1KB Image download
41116_2022_35_Article_IEq88.gif 1KB Image download
Fig. 1 96KB Image download
MediaObjects/13046_2022_2514_MOESM1_ESM.avi 15999KB Other download
41116_2022_35_Article_IEq90.gif 1KB Image download
41116_2022_35_Article_IEq91.gif 1KB Image download
41116_2022_35_Article_IEq92.gif 1KB Image download
【 图 表 】

41116_2022_35_Article_IEq92.gif

41116_2022_35_Article_IEq91.gif

41116_2022_35_Article_IEq90.gif

Fig. 1

41116_2022_35_Article_IEq88.gif

41116_2022_35_Article_IEq87.gif

Fig. 4

40854_2022_413_Article_IEq262.gif

41116_2022_35_Article_IEq84.gif

41116_2022_35_Article_IEq79.gif

41116_2022_35_Article_IEq75.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  文献评价指标  
  下载次数:7次 浏览次数:0次