期刊论文详细信息
BMC Complementary Medicine and Therapies
Anti-colorectal cancer of Ardisia gigantifolia Stapf. and targets prediction via network pharmacology and molecular docking study
Research
Xianjing Hu1  Weibo Dai2  Weijie Peng2  Xin Liu2  Jing Yang3  Quanxi Mei4 
[1]Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, 523808, Dongguan, PR China
[2]Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, 528401, Zhongshan, PR China
[3]Pharmacology Laboratory, Zhongshan Hospital, Guangzhou University of Chinese Medicine, 528401, Zhongshan, PR China
[4]Zhongshan Torch Development Zone People’s Hospital, 528401, Zhongshan, PR China
[5]Shenzhen Baoan Authentic TCM Therapy Hospital, 518101, Shenzhen, PR China
关键词: Ardisia gigantifolia;    Chinese herbal medicine;    Colorectal cancer;    Network pharmacology;    Mechanism prediction;    Molecular docking;    Molecular dynamics simulation;   
DOI  :  10.1186/s12906-022-03822-8
 received in 2022-03-27, accepted in 2022-12-09,  发布年份 2022
来源: Springer
PDF
【 摘 要 】
BackgroundArdisia gigantifolia Stapf. (AGS), a Chinese folk medicine widely grows in the south of China and several studies reported that AGS could inhibit the proliferation of breast cancer, liver cancer, and bladder cancer cell lines. However, little is known about its anti-colorectal cancer (CRC) efficiency.MethodsIn the present study, a combination of MTT assay, network pharmacological analysis, bioinformatics, molecular docking, and molecular dynamics simulation study was used to investigate the active ingredients, and targets of AGS against CRC, as well as the potential mechanism.ResultsMTT assay showed that three kinds of fractions from AGS, including the n-butanol extract (NBAGS), ethyl acetate fraction (EAAGS), and petroleum ether fraction (PEAGS) significantly inhibited the proliferation of CRC cells, with the IC50 values of 197.24, 264.85, 15.45 µg/mL on HCT116 cells, and 523.6, 323.59, 150.31 µg/mL on SW620 cells, respectively. Eleven active ingredients, including, 11-O-galloylbergenin, 11-O-protocatechuoylbergenin, 11-O-syringylbergenin, ardisiacrispin B, bergenin, epicatechin-3-gallate, gallic acid, quercetin, stigmasterol, stigmasterol-3-o-β-D-glucopyranoside were identified. A total of 173 targets related to the bioactive components and 21,572 targets related to CRC were picked out through database searching. Based on the crossover targets of AGS and CRC, a protein-protein interaction network was built up by the String database, from which it was concluded that the core targets would be SRC, MAPK1, ESR1, HSP90AA1, MAPK8. Besides, GO analysis showed that the numbers of biological process, cellular component, and molecular function of AGS against CRC were 1079, 44, and 132, respectively, and KEGG pathway enrichment indicated that 96 signaling pathways in all would probably be involved in AGS against CRC, among which MAPK signaling pathway, lipid, and atherosclerosis, proteoglycans in cancer, prostate cancer, adherens junction would probably be the major pathways. The docking study verified that AGS had multiple ingredients and multiple targets against CRC. Molecular dynamics (MD) simulation analysis showed that the binding would be stable via forming hydrogen bonds.ConclusionOur study showed that AGS had good anti-CRC potency with the characteristics of multi-ingredients, -targets, and -signaling pathways.
【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305110991030ZK.pdf 7524KB PDF download
Fig. 4 215KB Image download
Fig. 1 499KB Image download
41116_2022_35_Article_IEq58.gif 1KB Image download
41116_2022_35_Article_IEq65.gif 1KB Image download
MediaObjects/12888_2022_4490_MOESM1_ESM.doc 31KB Other download
Fig. 5 3909KB Image download
41116_2022_35_Article_IEq87.gif 1KB Image download
MediaObjects/12888_2023_4543_MOESM1_ESM.docx 72KB Other download
41116_2022_35_Article_IEq105.gif 1KB Image download
41116_2022_35_Article_IEq112.gif 1KB Image download
41116_2022_35_Article_IEq116.gif 1KB Image download
41116_2022_35_Article_IEq117.gif 1KB Image download
41116_2022_35_Article_IEq118.gif 1KB Image download
41116_2022_35_Article_IEq119.gif 1KB Image download
MediaObjects/12888_2023_4540_MOESM1_ESM.docx 18KB Other download
42004_2022_796_Article_IEq4.gif 1KB Image download
Fig. 2 603KB Image download
41116_2022_35_Article_IEq122.gif 1KB Image download
41116_2022_35_Article_IEq123.gif 1KB Image download
41116_2022_35_Article_IEq124.gif 1KB Image download
41116_2022_35_Article_IEq125.gif 1KB Image download
41116_2022_35_Article_IEq131.gif 1KB Image download
41116_2022_35_Article_IEq133.gif 1KB Image download
【 图 表 】

41116_2022_35_Article_IEq133.gif

41116_2022_35_Article_IEq131.gif

41116_2022_35_Article_IEq125.gif

41116_2022_35_Article_IEq124.gif

41116_2022_35_Article_IEq123.gif

41116_2022_35_Article_IEq122.gif

Fig. 2

42004_2022_796_Article_IEq4.gif

41116_2022_35_Article_IEq119.gif

41116_2022_35_Article_IEq118.gif

41116_2022_35_Article_IEq117.gif

41116_2022_35_Article_IEq116.gif

41116_2022_35_Article_IEq112.gif

41116_2022_35_Article_IEq105.gif

41116_2022_35_Article_IEq87.gif

Fig. 5

41116_2022_35_Article_IEq65.gif

41116_2022_35_Article_IEq58.gif

Fig. 1

Fig. 4

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  • [75]
  • [76]
  • [77]
  • [78]
  • [79]
  • [80]
  • [81]
  文献评价指标  
  下载次数:0次 浏览次数:0次