期刊论文详细信息
Journal of High Energy Physics
Learning to identify semi-visible jets
Regular Article - Theoretical Physics
Daniel Whiteson1  Taylor Faucett1  Shih-Chieh Hsu2 
[1] Department of Physics and Astronomy, University of California, Irvine, CA, USA;Department of Physics, University of Washington, Seattle, WA, USA;
关键词: Dark Matter at Colliders;    Jets and Jet Substructure;   
DOI  :  10.1007/JHEP12(2022)132
 received in 2022-08-23, accepted in 2022-11-21,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

We train a network to identify jets with fractional dark decay (semi-visible jets) using the pattern of their low-level jet constituents, and explore the nature of the information used by the network by mapping it to a space of jet substructure observables. Semi-visible jets arise from dark matter particles which decay into a mixture of dark sector (invisible) and Standard Model (visible) particles. Such objects are challenging to identify due to the complex nature of jets and the alignment of the momentum imbalance from the dark particles with the jet axis, but such jets do not yet benefit from the construction of dedicated theoretically-motivated jet substructure observables. A deep network operating on jet constituents is used as a probe of the available information and indicates that classification power not captured by current high-level observables arises primarily from low-pT jet constituents.

【 授权许可】

Unknown   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305067702341ZK.pdf 745KB PDF download
12982_2022_119_Article_IEq164.gif 1KB Image download
12982_2022_119_Article_IEq182.gif 1KB Image download
MediaObjects/12982_2022_119_MOESM1_ESM.docx 38KB Other download
Fig. 4 3268KB Image download
12902_2022_1244_Article_IEq8.gif 1KB Image download
MediaObjects/12974_2022_2641_MOESM1_ESM.docx 1099KB Other download
【 图 表 】

12902_2022_1244_Article_IEq8.gif

Fig. 4

12982_2022_119_Article_IEq182.gif

12982_2022_119_Article_IEq164.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  文献评价指标  
  下载次数:5次 浏览次数:0次