Journal of High Energy Physics | |
Top-philic dark matter in a hybrid KSVZ axion framework | |
Regular Article - Theoretical Physics | |
Rishav Roshan1  Partha Konar2  Anupam Ghosh3  | |
[1] Department of Physics, Kyungpook National University, 41566, Daegu, Korea;Theoretical Physics Division, Physical Research Laboratory, Shree Pannalal Patel Marg, 380009, Ahmedabad, Gujarat, India;Theoretical Physics Division, Physical Research Laboratory, Shree Pannalal Patel Marg, 380009, Ahmedabad, Gujarat, India;Discipline of Physics, Indian Institute of Technology, Palaj, 382424, Gandhinagar, Gujarat, India; | |
关键词: Dark Matter at Colliders; Jets and Jet Substructure; | |
DOI : 10.1007/JHEP12(2022)167 | |
received in 2022-07-08, accepted in 2022-11-28, 发布年份 2022 | |
来源: Springer | |
【 摘 要 】
We explore a two-component dark matter scenario in an extended Kim-Shifman-Vainshtein-Zakharov (KSVZ) axion framework. This hybrid setup incorporates an extra SU(2)L complex singlet scalar whose lightest component plays the role of one of the dark matter, while the QCD axion of the KSVZ model acts as a second dark matter candidate. In this work, we focus on accentuating the role of vector-like quark that naturally emerges in the KSVZ extension on the dark matter and collider phenomenology. Here, we demonstrate that the presence of this colored particle can significantly affect the allowed dark matter parameter space of the scalar dark matter by opening up additional co-annihilation as well as the direct detection channels. Moreover, the interaction between the color particle with the top quark and scalar dark matter provides a unique topology to generate a boosted-top pair with considerable missing transverse momentum at the LHC. Using jet substructure variables and multivariate analysis, here we show that one can already exclude a vast region of parameter space with 139 fb−1 integrated luminosity at 14 TeV LHC.
【 授权许可】
Unknown
© The Author(s) 2022
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202305061431834ZK.pdf | 4783KB | download | |
Fig. 6 | 234KB | Image | download |
MediaObjects/41408_2022_759_MOESM5_ESM.pdf | 799KB | download | |
Fig. 3 | 694KB | Image | download |
Fig. 2 | 1566KB | Image | download |
MediaObjects/13690_2022_994_MOESM1_ESM.docx | 42KB | Other | download |
Fig. 2 | 94KB | Image | download |
MediaObjects/41408_2022_759_MOESM11_ESM.xlsx | 13KB | Other | download |
MediaObjects/41408_2022_759_MOESM12_ESM.xlsx | 11KB | Other | download |
Fig. 2 | 361KB | Image | download |
12864_2022_9026_Article_IEq102.gif | 1KB | Image | download |
Fig. 2 | 291KB | Image | download |
MediaObjects/13046_2020_1633_MOESM2_ESM.tif | 2797KB | Other | download |
Fig. 3 | 203KB | Image | download |
Fig. 5 | 74KB | Image | download |
【 图 表 】
Fig. 5
Fig. 3
Fig. 2
12864_2022_9026_Article_IEq102.gif
Fig. 2
Fig. 2
Fig. 2
Fig. 3
Fig. 6
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
- [19]
- [20]
- [21]
- [22]
- [23]
- [24]
- [25]
- [26]
- [27]
- [28]
- [29]
- [30]
- [31]
- [32]
- [33]
- [34]
- [35]
- [36]
- [37]
- [38]
- [39]
- [40]
- [41]
- [42]
- [43]
- [44]
- [45]
- [46]
- [47]
- [48]
- [49]
- [50]
- [51]
- [52]
- [53]
- [54]
- [55]
- [56]
- [57]
- [58]
- [59]
- [60]
- [61]
- [62]
- [63]
- [64]
- [65]
- [66]
- [67]
- [68]
- [69]
- [70]
- [71]
- [72]
- [73]
- [74]
- [75]
- [76]
- [77]
- [78]
- [79]
- [80]
- [81]
- [82]
- [83]
- [84]
- [85]
- [86]
- [87]
- [88]
- [89]
- [90]
- [91]
- [92]
- [93]
- [94]
- [95]
- [96]
- [97]
- [98]
- [99]
- [100]
- [101]
- [102]
- [103]
- [104]
- [105]
- [106]
- [107]
- [108]
- [109]
- [110]
- [111]
- [112]
- [113]
- [114]
- [115]
- [116]
- [117]
- [118]
- [119]
- [120]
- [121]
- [122]
- [123]
- [124]
- [125]
- [126]
- [127]
- [128]