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1 Introduction

The microscopic nature of dark matter (DM) remains one of the most pressing open ques-
tions in modern physics [1, 2], and a robust program of experimental searches for evidence
of its interaction with the visible sector [3–11] described by the Standard Model (SM).
These experiments typically assume that DM is neutral, stable and couples weakly to SM
particles; in collider settings this predicts detector signatures in which weakly-produced
DM particles are invisible, evidenced only by the imbalance of momentum transverse to
the beam. No evidence of DM interactions has been observed to date.

However, while these assumptions are reasonable, the lack of observation motivates
the exploration of scenarios in which one or more of them are relaxed. Specifically, if
DM contains complex strongly-coupled hidden sectors, such as appear in many Hidden-
Valley models [12, 13], it may lead to the production of stable or meta-stable dark particles
within hadronic jets [14–17]. Depending on the portion of the jet which results in dark-
sector hadrons, it may be only semi-visible to detectors, leading to a unique pattern of
energy deposits, or jet substructure.

A robust literature exists for the identification of jet substructure [18–21], with applica-
tions to boosted W -boson [22–24], Higgs boson [25] and top-quark tagging [24]. Typically,
observables are designed to discriminate between the energy deposition patterns left by
jets which result from a single hard parton and the patterns left by jets which result from
several collimated hard partons, as can be produced from the decay of a massive boosted
particle. While these observables have some power when adapted to the task of identifying
semi-visible jets [16, 26], no observables have yet been specifically designed to be sensitive
to the unique energy patterns of semi-visible nature of jets.

In parallel, the rapid development of machine learning to the analysis of jet energy
depositions [19, 22, 27] demonstrated that jet tagging strategies, including those for semi-
visible jets, can be learned directly from lower-level jet constituents without the need to
form physics-motivated high level observables [17, 28]. Such learned models are natu-
rally challenging to interpret, validate or quantify uncertainties, especially given the high-
dimensional nature of their inputs. In the case of semi-visible jets, extra care must be
taken when drawing conclusions from low-level details, many of which may depend on spe-
cific theoretical parameter choices as well as the approximations made during modeling of
hadronization [26]. However, techniques have been recently demonstrated [29–32] to trans-
late the learned model into interpretable high-level observables, which can provide guidance
regarding the nature and robustness of the information being used for classification.

In this paper, we present a study of machine learning models trained to distinguish
semi-visible jets from QCD background jets using the patterns of their low-level jet con-
stituents. We compare the performance of models which use low-level constituents to those
which use the set of existing high-level observables to explore where the existing HL observ-
ables do and do not capture all of the relevant information. Where gaps exist, we attempt
to translate [29] low-level networks into networks which use a small set of interpretable
observables which replicate their decisions and performance. Interpretation of these ob-
servables can yield insight into the nature of the energy deposition inside semi-visible jets.

– 1 –



J
H
E
P
1
2
(
2
0
2
2
)
1
3
2

(a) s-channel (b) t-channel

Figure 1. Feynman diagrams for s-channel and t-channel pair-production of dark-sector quarks χi
which lead to semi-visible jet production.

Semi-visible jets

Stable Dark Jet Long Lived Dark Jet Fractional Decay

(Semi-visible Jet) Rapid decay

Dark Jet
Visible Jet

(a) Rapid Decay (Visible),
rinv = 0.

Semi-visible jets

Stable Dark Jet Long Lived Dark Jet Fractional Decay

(Semi-visible Jet) Rapid decay

Dark Jet
Visible Jet

(b) Stable Dark Jet (Invisible),
rinv = 1.

Semi-visible jets

Stable Dark Jet Long Lived Dark Jet Fractional Decay

(Semi-visible Jet) Rapid decay

Dark Jet
Visible Jet

(c) Fractional Decay (Semi-
Visible), rinv ∈ (0, 1).

Figure 2. Depictions of jets produced with varying visible (SM, solid red) and invisible (dark
sector, dashed black) components.

2 Semi-visible jets

Following refs. [14, 16], we consider pair production of dark-sector quarks of several flavors
(χi = χ1,2) via a messenger sector which features a Z ′ gauge boson in an s-channel process
(figure 1(a)) or scalar mediator ϕ in the t-channel process (figure 1(b)) that couples to both
SM and DM sectors and leads to a dijet signature. The dark quarks produce QCD-like
dark showers, involving many dark quarks and gluons which produce dark hadrons, some
of which are stable or meta-stable and some of which decay into SM hadrons via an off-shell
process.

The detector signature of the resulting semi-visible jet (SVJ) depends on the lifetime
and stability of the dark hadrons, leading to several possibilities (see figure 2). Though the
physics is complex and depends on the details of the dark sector structure, a description
of the dark and SM hadrons produced by a DM model quark can be encapsulated in the
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quantity rinv, the ratio of dark stable hadrons to all hadrons in the jet:

rinv ≡
〈# of stable dark hadrons

# of hadrons

〉
. (2.1)

An invisible fraction of rinv = 0 corresponds to a dark quark which produces a jet con-
sisting of only visible hadrons, as depicted in the Rapid Decay example given in figure 2(a).
Alternatively, an invisible fraction of rinv = 1 describes a stable dark jet (figure 2(b)),
in which the dark quark hadronizes exclusively in the dark sector. For any intermediate
value of rinv, jets contain a visible and invisible fraction, leading to ��ET along the jet axis
(figure 2(c)).

3 Sample generation and data processing

Samples of simulated events with semi-visible jets are generated using the modified Hidden
Valley [12] model described in [14, 15] for both an s-channel (figure 1(a)) and t-channel
(figure 1(b)) process. Samples of simulated pp → Z ′ → χ1χ1 and pp → ϕ → χ1χ1
events are produced in proton-proton collisions at a center-of-mass energy of

√
s = 13TeV

in MadGraph5 [33] (v2.6.7) with xqcut=100 and the NNPDF2.3 LO PDF set [34]. The
mediator mass is set to 1.5TeV and the dark quark mass toMχ1 = 10GeV. Up to two extra
hard jets due to radiation are generated and MLM-matched [35], to facilitate comparison
with existing studies. Invisible fraction, showering and hadronization are performed with
Pythia8 v8.244 [36]. In particular, the following parameters are set: the dark confinement
scale Λd = 5GeV; the number of dark colors Nc = 2; the number of dark flavors Nf = 1;
and the intermediate dark meson ρd mass of mρd

= 20GeV and the dark matter πd mass
of md = 9.9GeV. Distinct sets were generated for invisible fractions of rinv ∈ [0.0, 0.3, 0.6]
via configurations of the branching ratio of decay process ρd → πdπd. Detector simulation
and reconstruction are conducted in Delphes v3.4.2 [37] using the default ATLAS card. A
sample of SM jets from a typical QCD process is generated from the pp→ jj process. The
same simulation chain as described above is applied to the SM jets.

Jets are built from calorimeter energy deposits and undergo the jet trimming procedure
described in ref. [38] with the anti-kT [39] clustering algorithm from pyjet [40], using a
primary jet-radius parameter of R = 1.0 and subjet clustering radius of Rsub = 0.2 and
fcut = 0.05. The threshold on fcut effectively removes constituents in subjets with pT
that is less than 5% of the jet pT. Leading jets are required to have pT ∈ [300, 400]GeV.
For each event generated, the leading jet is selected and truth-matched to guarantee the
presence of a dark quark within the region of ∆R < 1. The fraction of events in which the
leading jet satisfies this criterion is approximately 30% and is likely to be sensitive to the
dark hadron shower modeling.

After all selection requirements, 2 × 106 simulated jets remain with a 50/50 split
between SVJ signal and QCD background. To avoid inducing biases from artifacts of the
generation process, signal and background events are weighted such that the distributions
in pT and η are uniform; see figure 7.
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s-channel AUC
Model rinv = 0.0 0.3 0.6
LightGBM 0.861 0.803 0.736
XGBoost 0.861 0.803 0.736
DNN 0.860 0.799 0.734
t-channel AUC
Model rinv = 0.0 0.3 0.6
LightGBM 0.808 0.755 0.683
XGBoost 0.806 0.755 0.681
DNN 0.801 0.726 0.656

Table 1. Summary of performance (AUC) in the SVJ classification task for several networks using
high-level features, for the six simulated scenarios, three choices of invisible fraction rinv for both
the s-channel and t-channel processes. Statistical uncertainty in each case is less than ±0.002 with
a 95% confidence, measured using bootstrapping over 200 models.

3.1 High-level observables

A large set of jet substructure observables [20, 41, 42] have been proposed for tasks different
from the focus of this study, that of identifying jets with multiple hard subjets. Neverthe-
less, these observables may summarize the information content in the jet in a way that is
relevant for the task of identifying semi-visible jets [16], and so serve as a launching point
for the search for new observables.

Our set of high-level (HL) observables includes 15 candidates: jet pT, the Generalized
Angularities [43] of pDT and Les Houches Angularity (LHA), N-subjettiness ratios τβ=1

21 and
τβ=1

32 [44], and Energy Correlation function ratios [19] Cβ=1
2 , Cβ=2

2 , Dβ=1
2 , Dβ=2

2 , e2, e3,
as well as jet width, jet emass, constituent multiplicity and the splitting function [18] zg.
In each case, observables are calculated from trimmed jet constituents described above.
Definitions and distributions for each high-level observable are provided in appendix B.1
with re-weighting applied as described above.

4 Machine learning and evaluation

For both the low-level (LL) trimmed jet constituents and high-level jet substructure ob-
servables, a variety of networks and architectures are tested.

Due to their strong record in previous similar applications [17, 29–31], a deep neural
network using dense layers is trained on the high-level observables. We additionally consider
XGBoost [45], which has shown strong performance in training high-level classifiers with
jet substructure [46, 47], as well as LightGBM [48] which has demonstrated power in class
separation on high-level features. LightGBM has the strongest classification performance
among these networks which use high-level features; see table 1.

In the case of classifiers which use low-level constituents, convolutional neural networks
on jet images are considered [22, 29–31, 49, 50]. Given the specific task of classifying jet
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s-channel AUC
Model rinv = 0.0 0.3 0.6
PFN 0.866 0.822 0.776
EFN 0.849 0.795 0.735
CNN 0.855 0.792 0.740
t-channel AUC
Model rinv = 0.0 0.3 0.6
PFN 0.806 0.754 0.697
EFN 0.796 0.741 0.672
CNN 0.791 0.739 0.663

Table 2. Summary of performance (AUC) in the SVJ classification task for several networks using
low-level constituents, for the six simulated scenarios, three choices of invisible fraction rinv for both
the s-channel and t-channel processes. Statistical uncertainty in each case is less than ±0.002 with
a 95% confidence, measured using bootstrapping over 200 models.

substructure observables and their use for a similar task in ref. [31], Energy Flow Networks
(EFN) and Particle Flow Networks (PFN) are also applied [51], and found to significantly
out-perform convolutional networks, with the PFN emerging as the most powerful network;
see table 2.

Receiver operating characteristic (ROC) curves for both the PFN and LightGBM high-
level models are given in figure 3. Additional details for the network training and hyper-
parameter selections are provided in appendix C.

4.1 Performance comparison

We compare the SVJ classification performance of the most powerful networks based on
high-level or low-level input features, through calculations of the Area under the ROC
Curve (AUC); see figure 3 and table 3.

Note that the high-level (HL) observables are calculated directly from the low-level
constituents with no additional information. If HL features extract all of the relevant
information for the classification task, networks which use them as inputs should be able
to match the performance of the networks which use the LL information directly, which we
take as a probe of the power of the available information. If networks using LL information
surpass the performance of those using HL information, it suggests that information exists
in the LL constituents which is not being captured by the HL observables. One might
consider directly applying networks based on LL information to the classification task [17],
but this presents challenges in calibrating, validating and quantifying uncertainties on
their high-dimensional inputs. Instead, a performance gap suggests the possibility that an
additional HL observable might be crafted to take advantage of the overlooked information.

In each of the six cases explored here, the networks which use low-level information
match or exceed the performance of networks which use high-level jet observables. Signif-
icant performance gaps are seen in the rinv = 0.6 case, where the AUC between the LL
and HL networks is 0.040 and 0.014 for the s-channel and t-channel cases, as well as in
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Figure 3. Comparison of performance between a network which uses low-level constituents (PFN
in solid red) and one which uses high-level jet observables (LightGBM, dashed blue). Shown are the
background rejection (inverse of background efficiency) versus signal efficiency for the six simulated
cases: s-channel and t-channel production for three values of rinv. Statistical uncertainty on AUC
in each case is less than ±0.002 at 95% confidence level, measured using bootstrapping over 200
models.

s-channel

Model [Features] rinv = 0.0 rinv = 0.3 rinv = 0.6
ADO [·,PFN] AUC ADO [·,PFN] AUC ADO [·,PFN] AUC

PFN [LL] 1 0.866 1 0.822 1 0.776

LightGBM [HL] 0.858 0.861 0.839 0.803 0.818 0.736
LL-HL gap 0.005 0.019 0.040

t-channel

Model [Features] rinv = 0.0 rinv = 0.3 rinv = 0.6
ADO [·,PFN] AUC ADO [·,PFN] AUC ADO [·,PFN] AUC

PFN [LL] 1 0.806 1 0.754 1 0.697

LightGBM [HL] 0.844 0.808 0.805 0.755 0.787 0.683
LL-HL gap −0.002 −0.001 0.014

Table 3. Summary of performance (AUC and ADO) in the SVJ classification task for various
network architectures and input features. Statistical uncertainty in each case is less than ±0.002
at 95% confidence level, measured using bootstrapping over 200 models.
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the and rinv = 0.3 invisible fraction in the s-channel process, where the gap is 0.019. In
the rinv = 0.0 s-channel scenario, a small gap is seen, though larger than the statistical
uncertainty. In the other two cases, the LL and HL networks achieve essentially equivalent
performance, strongly suggesting that the HL features have captured the relevant informa-
tion in the LL constituents. As these observables were not designed for this task, it was
not a priori clear that they would summarize all of the available and relevant information.

However, one can also assess the difference between the LL and HL networks using
other metrics than AUC. The Average Decision Ordering (ADO) metric, see eq. (5.5),
measures the fraction of input pairs in which two networks give the same output ordering.
Even in cases where the AUC is equivalent, the ADO between the LightGBM and PFN
(table 3) is well below 1, suggesting that while their classification performance is the same,
they arrive at it using distinct strategies. This indicates that there may be room to improve
the classification accuracy by considering a network which uses both sets of features.

5 Finding new observables

The studies above reveal that models which use low-level constituents as inputs provide
the overall best classification performance. However, our objective is not merely to find
the classifier with the optimal statistical performance with difficult-to-assess systematic
uncertainties. Rather, we seek to understand the underlying physics used by the PFN and
to translate this information into one or more meaningful physical features, allowing us
to extract insight into the physical processes involved and assign reasonable systematic
uncertainties. In this section, we search for these additional high-level observables among
the Energy Flow Polynomials [27] (EFP), which form a complete basis for jet observables.

5.1 Search strategy

Interpreting the decision making of a black-box network is a notoriously difficult problem.
For the task of jet classification, we apply the guided search technique utilized in past
jet-related interpretability studies [21, 29–32]. In this approach, new HL observables are
identified among the infinite set of Energy Flow Polynomials (EFPs) which exist as a com-
plete linear basis for jet observables. In the EFP framework, one-dimensional observables
are constructed as nested sums over measured jet constituent transverse momenta pT,i and
scaled by their angular separation θij .

These parametric sums are described as the set of all isomorphic multigraphs where:

each node⇒
N∑
i=1

zi, (5.1)

each k-fold edge⇒ (θij)k . (5.2)

and where each graph can be further parameterized by values of (κ, β),

(zi)κ =

 pT,i∑
j
pT,j


κ

, (5.3)

θβij =
(
∆η2

ij + ∆ϕ2
ij

)β/2
. (5.4)
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Here, pT,i is the transverse momentum of the trimmed jet for constituent i, and ∆ηij (∆ϕij)
is pseudorapidity (azimuth) difference between constituents i and j. As the EFPs are nor-
malized, they capture only the relative information about the energy deposition. For this
reason, in each network that includes EFP observables, we include as an additional input
the sum of pT over all constituents, to indicate the overall scale of the energy deposition.

For the set of EFPs, infrared and collinear (IRC) safety requires that κ = 1. To more
broadly explore the space, we consider examples with κ 6= 1 which generate more exotic
observables. For the case of EFPs with IRC-unsafe parameters, we select all prime graphs
with dimension d ≤ 5 and κ and β values of κ ∈

[
−2,−1, 0, 1

2 , 1, 2, 4
]
and β ∈

[
1
10 ,

1
2 , 1, 2, 4

]
.

Given the form of eq. (5.1) and eq. (5.2), the size and relative sign of inputs chosen for
(κ, β) will provide insights into utility of soft/hard pT effects and narrow/wide angle energy
distributions.

In principle, the EFP space is complete and any information accessible through con-
stituent-based observables is contained in some combination of EFPs. However, there is
no guarantee that an EFP representation will be compact. On the contrary, a blind search
through the space can prove time and resource prohibitive. Rather than a brute force search
of an infinite space of observables, we take the guided approach of ref. [29], which uses the
PFN as a black-box guide and iteratively assembles a set of EFPs which provide the closest
equivalent decision making in a compact and low-dimensional set of inputs. This is done
by isolating the space of information in which the PFN and existing HL features make
opposing decisions on the same inputs and isolates the EFP which most closely mimics the
PFN in that subspace.

Here, the agreement between networks f(x) and g(x) is evaluated over pairs of inputs
(x, x′) by comparing their relative classification decisions, expressed mathematically as:

DO[f, g](x, x′) = Θ
((
f(x)− f(x′)

)(
g(x)− g(x′)

))
, (5.5)

and referred to as decision ordering (DO). DO= 0 corresponds to inverted decisions over
all input pairs and DO = 1 corresponds to the same decision ordering. As prescribed in
ref. [29], we scan the space of EFPs to find the observable that has the highest average
decision ordering (ADO) with the guiding network when averaged over disordered pairs.
The selected EFP is then incorporated into the new model of HL features, HLn+1, and the
process is repeated until the ADO plateaus.

6 Guided iteration

For each of the four scenarios in which a gap is observed between the AUC performance of
the HL LightGBM model and the PFN, a guided search is performed to identify an EFP
observable which mimics the decisions of the PFN.

The search results, shown in table 4, identify in each of the four cases an EFP with
d ≤ 3 which boosts the classification performance of the LightGBM classifier when trained
with the original 15 HL features as well as the identified EFP observable. In addition, the
decision similarity (ADO) between the new HL model and the PFN is increased. Scans

– 8 –
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HL network HL+EFP network PFN
Process rinv AUC, ADO [.,pfn] EFP κ β AUC, ADO [.,pfn] AUC

s-channel 0.0 0.861, 0.858 −2 0.864, 0.863 0.866

s-channel 0.3 0.803, 0.839 1 1
2 0.807, 0.840 0.822

s-channel 0.6 0.736, 0.818 −1 2 0.747, 0.821 0.776

t-channel 0.6 0.683, 0.787 −2 1
10 0.690, 0.792 0.697

Table 4. Results of a guided search for high-level (HL) EFP observables which mimic the decision
ordering of the PFN, a network based on low-level constituents. For each of the four scenarios
in which a gap is observed between the AUC performance of the HL network and the PFN, an
EFP is selected to attempt to increase the average decision ordering (ADO) of the HL network
with the PFN. Statistical uncertainty in each case is ±0.002 with 95% confidence, measured using
bootstrapping over 100 models.

for a second EFP do not identify additional observables which significantly increase perfor-
mance or similarity. A guided search was also performed with an identical set of κ and β
parameters for EFPs with dimension d ≤ 5 but no improvements were seen in the case of
higher dimensional graph structure. While the performance and similarity gaps have been
reduced, they have not quite been erased.

6.1 Analysis of the guided search results

In the s-channel process, with invisible fraction rinv = 0.0, the addition of a single EFP
closes the small performance gap with the PFN within the statistical uncertainty. The
identified EFP in this case is the dot graph with the IRC-unsafe energy exponent κ = −2,
expressed as a sum over constituents in eq. (6.1).

( )( κ=−2
β=n/a

)
=

N∑
a=1

1
z2
a

. (6.1)

This graph is, in effect, simply a measure of the sum of the inverse p2
T of the jet constituents,

and is sensitive to constituents with low pT. Distribution of values of this observable for
signal and background events are shown in figure 4, demonstrating good separation between
signal and background.

In the remaining s-channel and t-channel examples, addition of the selected EFP im-
proves performance but fails to match the PFN. Of the three existing gaps, the s-channel
process with rinv = 0.3 is the only result in which we see an IRC-safe EFP observable,
where κ = 1. In the other cases, the EFP graphs again have κ < 0, making them sensitive
to low-pT information. The complete expression for each selected graph is given in eq. (6.2)
and the distributions of each observable for signal and background are shown in figure 5.
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Figure 5. Distribution of EFP observables selected by the guided search for the s-channel rinv =
0.3, rinv = 0.6 and t-channel rinv = 0.6 scenarios, shown for semi-visible jets (SVJ) as well as QCD
jets from the Standard Model background (SM Bkg). The inset panes show the graph corresponding
to the selected EFP. See text for additional details.

The triangular graph selected in the case of the t-channel process with invisible fraction
rinv = 0.6 has the same structure as the energy correlation ratio (e3), though with distinct
κ and β values.

( )( κ=1
β= 1

2

)
=

N∑
a,b=1

zazb (θab)3/2 (6.2a)

( )(κ=−1
β=2

)
=

N∑
a,b,c=1

(θabθac)2

zazbzc
(6.2b)

( )(κ=−2
β= 1

10

)
=

N∑
a,b,c=1

(θabθbcθac)
1

10

zazbzc
. (6.2c)
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HL Pass 1 Pass 2 Guided PFN
Process rinv AUC Graph κ β AUC Graph κ β AUC HL AUC AUC

s-channel 0.0 0.861 1
2 2 0.864 2 1

10 0.866 0.864 0.866

s-channel 0.3 0.803 4 2 0.807 −1 1 0.809 0.807 0.822

s-channel 0.6 0.736 4 4 0.744 −2 1
10 0.747 0.747 0.776

t-channel 0.6 0.683 −1 1
10 0.690 −2 4 0.692 0.690 0.697

Table 5. Summary of two passes of a greedy search through EFP space for additional observables
which might capture the information used by the low-level network (PFN) and match its perfor-
mance, as measured by AUC. For each of the four processes and rinv scenarios in which we have
identified a gap between performance of the PFN and the HL model, two passes are made to identify
the EFP which most improves the AUC of a new HL model which incorporates the candidate EFP.
Performance of the HL model deduced by the guided search (table 4) and the PFN are also given.
Statistical uncertainty in each case is ±0.002 with 95% confidence, measured using bootstrapping
over 100 models.

7 Greedy search

Given the persistent gap between the performance of the LL networks and the HL models
augmented by EFP observables, we consider whether the EFP space lacks the needed
observables, or whether the guided search is failing to identify it. We examine this question
by taking a more comprehensive look at the space of EFPs we consider. Similar to the
technique described in ref. [29], we perform a greedy search in the same EFP space studied
in the guided iteration approach explored above. In a greedy search, we explicitly train a
new model for each candidate EFP, combining the EFP with the existing 15 HL features.
Note that this is significantly more computationally intensive than evaluation of the ADO,
as done in the guided search, and seeks to maximize AUC rather than to align decision
ordering with the PFN. The candidate EFP which produces the best-performing model is
kept as the 16th HL observable (Pass 1), and the process is repeated in search of a 17th
(Pass 2), until a plateau in performance is observed.

The results of the greedy search across all choices of rinv in s-channel and t-channel
scenarios where a gap between HL and LL exists are given in table 5. Similar levels of
performance are achieved as in the guided search, to within statistical uncertainties. In all
cases, the HL and LL gap persists. Results are given for the IRC-unsafe selections with
dimension d ≤ 3. A similar greedy search was also performed on the IRC-unsafe d ≤ 5
EFP set with no performance differences observed.

The greedy search selects similar EFP graphs as the guided search, with the exception
of the 4-node graph selected in pass 2 for the rinv = 0.6, t-chanel scenario. No IRC-safe
graphs (κ = 1) are selected and we again see frequent sensitivity to low pT parameters (i.e.
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Figure 6. Distribution of constituent pT relative to the jet pT for the six scenarios: s-channel and
t-channel with rinv ∈ [0, 0.3, 0.6].

κ = −2,−1, 1
2) and a variety of both narrow and wide angle features (i.e. β = 1

10 , 2, 4).
A repeat of the greedy search with only IRC-safe observables achieves no performance
improvements over the original HL features, suggesting that missing information may be
strongly tied to IRC-unsafe representations of the information in the jet constituents.

8 Exploration of pT dependence

The results of both the guided search and the greedy search strongly suggest that the full
performance gap which persists between the HL and LL representation of the jet contents
cannot be compactly expressed in terms of a small number of EFP observables in the set
that have been considered. This raises the question of what feature of the LL constituents
can be credited with this performance improvement and why that information does not
translate compactly to our EFP observables. The clues from the guided and greedy search
point to sensitivity to low-pT constituents, as can be generated from soft radiation. Figure 6
shows the distribution of constituent pT relative to the jet pT for the six scenarios, in which
SVJs appear to have more constituents at low relative pT, as also seen in ref. [52]. Recall
that jet constituents are trimmed if the subjet they belong to has a pT below a threshold
of 5% of the pT of the jet, corresponding to fcut = 0.05.

To consider whether the distinguishing information is contained in these low-pT con-
stituents, we explore a broader range of thresholds, both lowering it to 0% and raising it
to 10% and 15%. The HL features are re-evaluated on the newly trimmed constituents,
and used as inputs to a new LightGBM model, whose performance is compared to a PFN
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s-channel
rinv = 0.0 rinv = 0.3 rinv = 0.6

fcut PFN LightGBM LL-HL Gap PFN LightGBM LL-HL Gap PFN LightGBM LL-HL Gap
0.00 0.908 0.895 0.013 0.853 0.829 0.024 0.788 0.739 0.049
0.05 0.866 0.861 0.005 0.822 0.803 0.019 0.776 0.736 0.040
0.10 0.847 0.848 −0.001 0.790 0.790 0.000 0.746 0.721 0.025
0.15 0.838 0.843 −0.005 0.784 0.785 −0.001 0.738 0.717 0.021

t-channel
rinv = 0.0 rinv = 0.3 rinv = 0.6

fcut PFN LightGBM LL-HL Gap PFN LightGBM LL-HL Gap PFN LightGBM LL-HL Gap
0.00 0.825 0.817 0.008 0.748 0.737 0.011 0.662 0.647 0.0015
0.05 0.806 0.808 −0.002 0.754 0.755 −0.001 0.697 0.683 0.014
0.10 0.741 0.742 −0.001 0.662 0.663 −0.001 0.595 0.597 −0.002
0.15 0.731 0.740 −0.009 0.655 0.661 −0.006 0.593 0.596 −0.003

Table 6. Comparison of the performance difference between a PFN operating on low-level con-
stituent information and a LightGBM model using high-level summary quantities, for several values
of the jet trimming parameter fcut. Jet constituents belonging to a subjet whose fraction of the jet
pT is below fcut are dropped, which has the effect of removing lower-pT constituents. Shown is the
AUC of each model for s- and t-channel processes under three rinv scenarios. Statistical uncertainty
in each case is ±0.002 with 95% confidence, measured using bootstrapping over 100 models.

trained on the trimmed constituents. Results for networks with varying fcut thresholds are
shown in table 6.

In each case, raising the fcut threshold decreases the classification performance, as
might be expected due to the removal of low-pT information. Perhaps more interesting is
the variation in the gap between the performance of the HL LightGBM model and the PFN
operating on low-level constituents. In nearly every case, the gap grows as more low-pT
information is included, supporting the hypothesis that this is the origin of most of the
information missing from the HL models. The details of the low-pT constituents are likely
to be very sensitive to modeling uncertainties and subject to concerns about infrared and
collinear safety.

However, even in for the most aggressive value of fcut = 0.15, a persistent gap of
∆AUC = 0.021 remains in the s-channel, rinv = 0.6 scenario, which cannot be explained
by low-pT constituents. We therefore examine this in more detail.

First, we consider the EFPs selected in the study above where fcut = 0.05, including
EFPs selected by the guided search (table 4) and the greedy search (table 5). For all
combinations of HL and identified EFPs, no performance gain is seen. Next, we perform
a fresh guided search on models trained from the fcut = 0.15 constituents. In contrast
to previous cases, no large improvement in training performance is obtained on the first
selected EFP. After 200 iterations, the gap is reduced to ∆AUC=0.010 with the addition
of 200 EFPs. We note that this far exceeds the mean number of constituents of these
trimmed jets, 60. We conclude that there does not appear to be a compact representation
of the remaining information in the EFP space we have explored.
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9 Conclusions

We have analyzed the classification performance of models trained to distinguish back-
ground jets from semi-visible jets using the low-level jet constituents, and found them to
offer stronger performance than models which rely on high-level quantities motivated by
other processes, mostly those involving collimated hadronic decays of massive objects.

While models operating on the existing suite of HL quantities nearly match the perfor-
mance of those using LL information, a significant gap exists which suggests that relevant
information remains to be captured, perhaps in new high-level features. To our knowl-
edge, this is the first study to compare the performance of constituent-based and high-level
semi-visible-jet taggers, and to identify the existence of relevant information uncaptured
by existing high-level features. Jets due to semi-visible decays are markedly different in
energy distribution than those from massive objects, so it is not unexpected that existing
features may not completely summarize the useful information.

Using a guided strategy, we identify a small set of new useful features from the space
of energy-flow polynomials, but these do not succeed in completely closing the performance
gap. In most cases, the remaining gap seems to be due to information contained in very low-
pT constituents, which is likely to be sensitive to modeling of showering and hadronization
and may not be infrared and collinear safe. This highlights the importance of interpretation
and validation of information used by constituent-based taggers. As demonstrated by
ref. [26], the specific pattern of energy deposition may depend sensitively on both the
parameters of the theoretical model as well as the settings chosen for the hadronization
model. The results drawn from this study might not be universally generalizable to other
dark shower models. It is therefore vital that the information being analyzed be interpreted
before being applied to analysis of collider data.

In one case studied here, a gap persist between low- and high-level-based models even
when low-pT constituents are aggressively trimmed, suggesting the possibility that a new
high-level feature could be crafted to capture this useful high-pT information. Our efforts
to capture this information with the simpler energy-flow polynomials was not successful,
suggesting that more complex high-pT observables may exist which provide useful discrim-
ination between QCD and semi-visible jets. The studies presented here can inform and
guide theoretical work to construct such observables specifically tailored to this category
of jets. Whether such observables can be efficiently represented using alternative basis
sets of observables, and whether they are robust to [53] or explicitly dependent on [54]
uncertainties while providing power over large regions of theoretical parameter space is an
important avenue for future work.
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Figure 7. Distributions of jet transverse momentum (pT) and pseudo-rapidity (η) shown for semi-
visible jet (SVJ) and the standard model background (SM Bkg) for the six simulated scenarios,
three choices of invisible fraction rinv for both the s-channel and t-channel processes. The SVJ
samples are reweighted to match the background distributions.

No. DE-SC0009920. S.-C. Hsu is supported by the National Science Foundation under
Grant No. 2110963.

A Signal reweighting

The signal and background distributions have distinct transverse momentum and pseudo-
rapidity distributions due to the processes used to generate them. We wish to learn to
classify the signal and background independent of these quantities, and so reweight the
signal events to match the background distribution, see figure 7.

B Jet substructure observables

High-level features used to discriminate between semi-visible and background jets are de-
fined below.

B.1 Jet transverse momentum and mass

The sum of jet pT constituents is included as a HL observable both in the initial HL inputs
and along with EFPs to give ML algorithms a relative scale for dimensionless EFP features
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Figure 8. Distributions of jet transverse momentum (pT) and emass shown for semi-visible jet and
the standard model background (SM Bkg) for the six simulated scenarios, three choices of invisible
fraction rinv for both the s-channel and t-channel processes.

to train with. The jet pT sum is calculated by

pT =
∑
i∈jet

pT,i . (B.1)

Distributions for jet pT and emass, defined below, are shown in figure 8.

B.2 Generalized angularities

Multiple standard HL observables are defined by choices of κ and β parameters from the
momentum fraction (zi) and angular separation (θi) of a Generalized Angularity (GA)
expression [43],

λκβ =
∑
i∈jet

zκi θ
β
i . (B.2)

The Les Houches Angularity (LHA) is defined from the GA expression with parameters
(κ = 1, β = 1/2) and pDT with (κ = 2, β = 0). Written explicitly, these become

LHA =
∑
i∈jet

ziθ
1/2
i (B.3)

pDT =
∑
i∈jet

z2
i . (B.4)

Two additional values, ewidth and emass, are produced by choices of (κ = 1, β = 1) and
(κ = 1, β = 2), respectively

ewidth =
∑
i∈jet

ziθi (B.5)

emass =
∑
i∈jet

ziθ
2
i . (B.6)

Lastly, the multiplicity (although technically defined as simply the total number of con-
stituents in the jet) can be expressed in this same generalized form for (κ = 0, β = 0)

multiplicity =
∑
i∈jet

1 . (B.7)

Distributions for all GA observables are shown in figure 9
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Figure 9. Distributions of jet pDT , LHA, width and multiplicity shown for semi-visible jet (red,
green, blue) and the standard model background (SM Bkg, yellow) for the six simulated scenarios,
three choices of invisible fraction rinv for both the s-channel and t-channel processes.

B.3 Energy correlation

Energy Correlation Functions [19] and their corresponding ratios are computed via the
functions: ECF1,ECF2 and ECF3,

ECF1 =
∑
i

pT,i (B.8)

ECFβ2 =
∑
i<j

pT,i pT,j (θij)β (B.9)

ECFβ3 =
∑
i<j<k

pT,i pT,j pT,k (θijθikθjk)β (B.10)

and the related ratios are given by,

eβ2 = ECFβ2
(ECF1)2 (B.11)

eβ3 = ECFβ3
(ECF1)3 (B.12)

from these ratios, we then compute the energy correlation ratios C2 and D2

C2 = e3

(e2)2 (B.13)

D2 = e3

(e2)3 . (B.14)

Distributions for all Energy Correlation observables are shown in figure 10
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Figure 10. Distributions of jet energy correlation functions
(
Cβ=1

2 , Cβ=2
2 , Dβ=1

2 andDβ=2
2

)
and

pairs e2 and e3 shown for semi-visible jet (red, green, blue) and the standard model background
(SM Bkg, yellow) for the six simulated scenarios, three choices of invisible fraction rinv for both the
s-channel and t-channel processes.

B.4 N-subjettiness

Given subjets isolated via clustering, for N candidate subjets, the N-subjettiness (τN ) [44]
is defined as,

τN = 1
d0

∑
k

pT,kmin (∆θ1,k,∆θ2,k, . . . ,∆θN,k) (B.15)

where we define the normalization factor d0 by,

d0 =
∑
k

pT,k R0 (B.16)

where R0 is the characteristic jet radius used during clustering. Finally, the N-subjettiness
ratios used are defined by

τβ=1
21 = τ2

τ1
(B.17)

τβ=1
32 = τ3

τ2
. (B.18)

Distributions for both N-subjettiness observables are shown in figure 11
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Figure 11. Distributions of jet N-subjettines
(
τβ=1

21 and τβ=1
32

)
shown for semi-visible jet (red,

green, blue) and the standard model background (SM Bkg, yellow) for the six simulated scenarios,
three choices of invisible fraction rinv for both the s-channel and t-channel processes.
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Figure 12. Distributions of jet splitting function zg shown for semi-visible jet (red, green, blue)
and the standard model background (SM Bkg, yellow) for the six simulated scenarios, three choices
of invisible fraction rinv for both the s-channel and t-channel processes.

B.5 Groomed momentum splitting fraction

The splitting fraction is described in terms of the Soft Drop grooming technique in ref. [18].
The feature is calculated using energyflow [27] with the Cambridge/Aachen algorithm using
a jet radius of R = 1 and Soft Drop parameters of β = 0 and zcut = 0.1.

A distribution for zg is given in figure 12

C ML architectures

C.1 Deep neural networks

All deep neural networks were trained in Tensorflow [55] and Keras [56]. The networks
were optimized with Adam [57] for up to 100 epochs with early stopping. For all networks,
weights were initialized using orthogonal weights [58]. Hyperparameters were optimized
using bayesian optimization with the Sherpa hyperparameter optimization library [59].

C.2 High-level DNN

All HL features are preprocessed with Scikit’s Standard Scaler [60] before training.

C.2.1 Deep neural networks

Hyperparameters and network design for all Dense networks trained on HL or EFP fea-
tures are selected via Sherpa optimization using between two and eight fully connected
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hidden layers and a final layer with a sigmoidal logistic activation function to predict the
probability of signal or background.

C.2.2 Particle-flow networks

The Particle Flow Network (PFN) is trained using the energyflow package [51]. Input
features are taken from the trimmed jet constituents and preprocessed by centering the
constituents in (η − ϕ) space to the average pT and normalizing constituent values to 1.
Both the EFN and PFN use this constituent information as inputs in the form of the
3-component hadronic measure measure option in EnergyFlow (i.e. pT, η, ϕ).

The PFN uses 3 dense layers in the per-particle frontend module and 3 dense layers
in the backend module. Both frontend and backend layers use 300 hidden nodes per layer
with a latent and filter dropout of 0.2. Each layer uses relu [61] activation and glorot
normal initializer. The final output layer uses a sigmoidal logistic activation function to
predict the probability of signal or background. The Adam optimizer is used and trained
with a batch size of 128 and a fixed learning rate of 0.001.

C.3 Boosted learning models

HL features are, again, preprocessed with Scikit’s Standard Scaler before training. Except
where indicated, default settings are used.

C.3.1 LightGBM

All applications of LightGBM are trained using regression for binary log loss classification
using Gradient Boosting Decision Trees. Performance is measured by the AUC metric for
a maximum of 5000 boosting rounds and early stopping set to 100 rounds against AUC
improvements.

C.3.2 XGBoost

All applications of XGBoost are trained using the gradient tree booster and settings of:
η = 0.1, subsample = 0.5, base_score = 0.1, γ = 0.0, and max_depth = 6. Performance is
measured by the AUC metric for a maximum of 5000 boosting rounds and early stopping
set to 100 rounds against AUC improvements.

C.4 Convolutional networks on jet images

The Convolutional Neural Networks used a jet image produced through EnergyFlow’s
pixelate function. Jet images were produced as a 32 × 32 pixel matrix with an image
width of 1.0. Resulting jet images were then normalized to a range of values between
[0, 1]. The network consisted of 3 hidden layers consisting of 300 nodes and used kernels
of size 3 × 3 and strides of 1 × 1. Each layer uses relu [61] activation and glorot normal
initializer. The final output layer uses a sigmoidal logistic activation function to predict
the probability of signal or background. The Adam optimizer is used and trained with a
batch size of 128 and a fixed learning rate of 0.001.
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