期刊论文详细信息
Genome Biology
Structural variant analysis of a cancer reference cell line sample using multiple sequencing technologies
Research
Li Tai Fang1  Eric Stahlberg2  Ben Kellman3  Alex R. Hastie3  Andy Wing Chun Pang3  Karl Hong3  Michael Colgan4  Wenming Xiao4  Tiantain Liu5  Zhong Chen5  Charles Wang5  Wanqiu Chen5  Daoud Meerzaman6  Andrew Carroll7  Zhaowei Yang8  Jing Li8  Christopher E. Mason9  Veronnica Mankinen1,10  Ali Moshrefi1,11  Aparna Natarajan1,11  Anastasiya Granat1,11  Robin Bombardi1,11  Tiffany Truong1,11  Erich Jaeger1,11  Rebecca Kusko1,12  Limin Wang1,13  Chunlin Xiao1,14  Zhipan Li1,15  Xiongfong Chen1,16  Tsai-wei Shen1,16  Keyur Talsania1,16  Yongmei Zhao1,16  Sulbha Choudhari1,16  Jack Collins1,16  Bao Tran1,17  Yuliya Kriga1,17  Tatyana Smirnova1,17  Jyoti Shetty1,17  Oksana German1,17 
[1] Bioinformatics Research & Early Development, Roche Sequencing Solutions Inc, 1301 Shoreway Road, 94002, Belmont, CA, USA;Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA;Bionano Genomics, CA92121, San Diego, USA;Center for Drug Evaluation and Research, FDA, Silver Spring, MD, USA;Center for Genomics, Loma Linda University School of Medicine, Loma Linda, CA, USA;Computational Genomics and Bioinformatics Branch, Center for Biomedical Informatics and Information Technology (CBIIT), National Cancer Institute, Rockville, MD, USA;DNAnexus, Mountain View, CA, USA;Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China;Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA;Dovetail Genomics, Scotts Valley, CA, USA;Illumina Inc, Foster City, CA, USA;Immuneering Corp, Cambridge, MA, USA;Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA;National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA;Sentieon Inc, Mountain View, CA, USA;Sequencing Facility Bioinformatics Group, Advanced Biomedical and Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA;Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, USA;Sequencing Facility, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA;
关键词: Structural variation;    Reference call set;    Cancer;    Multiple platforms;    Structural variant calling algorithm;    Next-generation sequencing technology;   
DOI  :  10.1186/s13059-022-02816-6
 received in 2021-10-17, accepted in 2022-11-17,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

BackgroundThe cancer genome is commonly altered with thousands of structural rearrangements including insertions, deletions, translocation, inversions, duplications, and copy number variations. Thus, structural variant (SV) characterization plays a paramount role in cancer target identification, oncology diagnostics, and personalized medicine. As part of the SEQC2 Consortium effort, the present study established and evaluated a consensus SV call set using a breast cancer reference cell line and matched normal control derived from the same donor, which were used in our companion benchmarking studies as reference samples.ResultsWe systematically investigated somatic SVs in the reference cancer cell line by comparing to a matched normal cell line using multiple NGS platforms including Illumina short-read, 10X Genomics linked reads, PacBio long reads, Oxford Nanopore long reads, and high-throughput chromosome conformation capture (Hi-C). We established a consensus SV call set of a total of 1788 SVs including 717 deletions, 230 duplications, 551 insertions, 133 inversions, 146 translocations, and 11 breakends for the reference cancer cell line. To independently evaluate and cross-validate the accuracy of our consensus SV call set, we used orthogonal methods including PCR-based validation, Affymetrix arrays, Bionano optical mapping, and identification of fusion genes detected from RNA-seq. We evaluated the strengths and weaknesses of each NGS technology for SV determination, and our findings provide an actionable guide to improve cancer genome SV detection sensitivity and accuracy.ConclusionsA high-confidence consensus SV call set was established for the reference cancer cell line. A large subset of the variants identified was validated by multiple orthogonal methods.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305060829910ZK.pdf 3404KB PDF download
MediaObjects/41408_2022_776_MOESM1_ESM.pdf 2021KB PDF download
Fig. 2 621KB Image download
12936_2022_4386_Article_IEq179.gif 1KB Image download
12936_2022_4386_Article_IEq183.gif 1KB Image download
MediaObjects/13046_2022_2501_MOESM1_ESM.pdf 8331KB PDF download
969KB Image download
Fig. 6 112KB Image download
Fig. 1 852KB Image download
Fig. 7 225KB Image download
Fig. 2 1121KB Image download
Fig. 4 2160KB Image download
MediaObjects/40560_2022_645_MOESM1_ESM.docx 1548KB Other download
MediaObjects/12974_2022_2667_MOESM7_ESM.xlsx 2852KB Other download
Fig. 4 942KB Image download
Fig. 3 870KB Image download
Fig. 1 1323KB Image download
Fig. 1 219KB Image download
Fig. 1 153KB Image download
Fig. 5 1457KB Image download
Fig. 3 49KB Image download
MediaObjects/12888_2022_4340_MOESM2_ESM.pdf 45KB PDF download
Fig. 4 751KB Image download
Fig. 6 2878KB Image download
Fig. 4 1207KB Image download
Fig. 1 266KB Image download
MediaObjects/40249_2022_1044_MOESM1_ESM.xlsx 16KB Other download
MediaObjects/40249_2022_1044_MOESM2_ESM.xlsx 14KB Other download
Fig. 1 681KB Image download
40708_2022_178_Article_IEq53.gif 1KB Image download
MediaObjects/41408_2022_759_MOESM1_ESM.docx 20KB Other download
41408_2022_764_Article_IEq9.gif 1KB Image download
41408_2022_764_Article_IEq11.gif 1KB Image download
Fig. 1 1034KB Image download
Fig. 6 963KB Image download
【 图 表 】

Fig. 6

Fig. 1

41408_2022_764_Article_IEq11.gif

41408_2022_764_Article_IEq9.gif

40708_2022_178_Article_IEq53.gif

Fig. 1

Fig. 1

Fig. 4

Fig. 6

Fig. 4

Fig. 3

Fig. 5

Fig. 1

Fig. 1

Fig. 1

Fig. 3

Fig. 4

Fig. 4

Fig. 2

Fig. 7

Fig. 1

Fig. 6

12936_2022_4386_Article_IEq183.gif

12936_2022_4386_Article_IEq179.gif

Fig. 2

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  文献评价指标  
  下载次数:4次 浏览次数:3次