期刊论文详细信息
Opuscula Mathematica
On the gauge-natural operators similar to the twisted Dorfman-Courant bracket
article
Włodzimierz M. Mikulski1 
[1] Jagiellonian University, Department of Mathematics
关键词: natural operator;    linear vector field;    linear form;    twisted Dorfman-Courant bracket;    the Jacobi identity in Leibniz form.;   
DOI  :  10.7494/OpMath.2021.41.2.205
学科分类:环境科学(综合)
来源: AGH University of Science and Technology Press
PDF
【 摘 要 】

All \(\mathcal{VB}_{m,n}\)-gauge-natural operators \(C\) sending linear \(3\)-forms \(H \in \Gamma^{l}_E(\bigwedge^3T^*E)\) on a smooth (\(\mathcal{C}^\infty\)) vector bundle \(E\) into \(\mathbf{R}\)-bilinear operators \[C_H:\Gamma^l_E(TE \oplus T^*E)\times \Gamma^l_E(TE \oplus T^*E)\to \Gamma^l_E(TE \oplus T^*E)\] transforming pairs of linear sections of \(TE \oplus T^*E \to E\) into linear sections of \( TE \oplus T^*E \to E\) are completely described. The complete descriptions is given of all generalized twisted Dorfman-Courant brackets \(C\) (i.e. \(C\) as above such that \(C_0\) is the Dorfman-Courant bracket) satisfying the Jacobi identity for closed linear \(3\)-forms \(H\). An interesting natural characterization of the (usual) twisted Dorfman-Courant bracket is presented.

【 授权许可】

CC BY-NC   

【 预 览 】
附件列表
Files Size Format View
RO202302200001641ZK.pdf 539KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:1次