Opuscula Mathematica | |
On the gauge-natural operators similar to the twisted Dorfman-Courant bracket | |
article | |
Włodzimierz M. Mikulski1  | |
[1] Jagiellonian University, Department of Mathematics | |
关键词: natural operator; linear vector field; linear form; twisted Dorfman-Courant bracket; the Jacobi identity in Leibniz form.; | |
DOI : 10.7494/OpMath.2021.41.2.205 | |
学科分类:环境科学(综合) | |
来源: AGH University of Science and Technology Press | |
【 摘 要 】
All \(\mathcal{VB}_{m,n}\)-gauge-natural operators \(C\) sending linear \(3\)-forms \(H \in \Gamma^{l}_E(\bigwedge^3T^*E)\) on a smooth (\(\mathcal{C}^\infty\)) vector bundle \(E\) into \(\mathbf{R}\)-bilinear operators \[C_H:\Gamma^l_E(TE \oplus T^*E)\times \Gamma^l_E(TE \oplus T^*E)\to \Gamma^l_E(TE \oplus T^*E)\] transforming pairs of linear sections of \(TE \oplus T^*E \to E\) into linear sections of \( TE \oplus T^*E \to E\) are completely described. The complete descriptions is given of all generalized twisted Dorfman-Courant brackets \(C\) (i.e. \(C\) as above such that \(C_0\) is the Dorfman-Courant bracket) satisfying the Jacobi identity for closed linear \(3\)-forms \(H\). An interesting natural characterization of the (usual) twisted Dorfman-Courant bracket is presented.
【 授权许可】
CC BY-NC
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202302200001641ZK.pdf | 539KB | download |