Opuscula Mathematica | |
On the twisted Dorfman-Courant like brackets | |
article | |
Włodzimierz M. Mikulski1  | |
[1] Jagiellonian University, Department of Mathematics | |
关键词: natural operator; linear vector field; linear form; (twisted) Dorfman-Courant bracket; Jacobi identity in Leibniz form.; | |
DOI : 10.7494/OpMath.2020.40.6.703 | |
学科分类:环境科学(综合) | |
来源: AGH University of Science and Technology Press | |
【 摘 要 】
There are completely described all \(\mathcal{VB}_{m,n}\)-gauge-natural operators \(C\) which, like to the Dorfman-Courant bracket, send closed linear \(3\)-forms \(H\in\Gamma^{l-\rm{clos}}_E(\bigwedge^3T^*E)\) on a smooth (\(\mathcal{C}^{\infty}\)) vector bundle \(E\) into \(\mathbf{R}\)-bilinear operators \[C_H:\Gamma^l_E(TE\oplus T^*E)\times \Gamma^l_E(TE\oplus T^*E)\to \Gamma^l_E(TE\oplus T^*E)\] transforming pairs of linear sections of \(TE\oplus T^*E\to E\) into linear sections of \(TE\oplus T^*E\to E\). Then all such \(C\) which also, like to the twisted Dorfman-Courant bracket, satisfy both some "restricted" condition and the Jacobi identity in Leibniz form are extracted.
【 授权许可】
CC BY-NC
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202302200001629ZK.pdf | 533KB | download |