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Abstract. All VBm,n-gauge-natural operators C sending linear 3-forms H ∈ Γl
E(
∧3

T ∗E)
on a smooth (C∞) vector bundle E into R-bilinear operators

CH : Γl
E(T E ⊕ T ∗E)× Γl

E(T E ⊕ T ∗E)→ Γl
E(T E ⊕ T ∗E)

transforming pairs of linear sections of T E⊕T ∗E → E into linear sections of T E⊕T ∗E → E
are completely described. The complete descriptions is given of all generalized twisted
Dorfman–Courant brackets C (i.e. C as above such that C0 is the Dorfman–Courant bracket)
satisfying the Jacobi identity for closed linear 3-forms H. An interesting natural characteriza-
tion of the (usual) twisted Dorfman–Courant bracket is presented.
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1. INTRODUCTION

All manifolds considered in the paper are assumed to be Hausdorff, second countable,
finite dimensional, without boundary, and smooth (of class C∞). Maps between
manifolds are assumed to be C∞.

In [3], the authors completely described bilinear operators on sections of the
Whitney sum TN ⊕ T ∗N → N of the tangent and cotangent bundles (for N a smooth
manifold), which areMfm-natural, i.e. invariant under the morphisms in the category
Mfm of m-dimensional manifolds and their submersions. The Courant bracket, defined
in [2], is an example of such operators and it is of particular interest, because it involves
in the concepts of Dirac and generalized complex structures on N , see [2, 4, 5]

A simple (but very important) modification of the Courant bracket is the so
called twisted (or H-twisted) Courant bracket [−,−]H on sections of TN ⊕ T ∗N → N
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for any 3-form H on a smooth manifold N . The properties of [−,−]H (for
closed H) were used in [8, 12] to define the concept of exact Courant algebroid.
In [9], we completely described allMfm-natural operators which send 3-forms H on
N into bilinear operators on sections of TN ⊕ T ∗N → N (for N a smooth manifold).

The restriction of the Courant bracket to linear sections of TE ⊕ T ∗E → E (for
E → M a smooth vector bundle) is called the Dorfman–Courant bracket, see [6].
It is of particular interest, because (TE ⊕ T ∗E;E, TM ⊕ E∗;M) is the standard
VB-Courant algebroid and the Dorfman–Courant bracket is the part of this structure.
(The Dorfman–Courant bracket can be also interpreted as the bracket of the Omni-Lie
algebroid Der(E∗)⊕ J1(E∗), studied in [1].)

In [10], we completely described all bilinear operators on linear sections of
TE ⊕ T ∗E → E (for E → M a smooth vector bundle), which are VBm,n-gauge-
-natural, i.e. invariant under the morphisms in the category VBm,n of rank-n vector
bundles over m-dimensional bases and their vector bundle isomorphisms onto images.
The Dorfman–Courant bracket is an example of such a VBm,n-gauge natural bilinear
operator

A : ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E)→ ΓlE(TE ⊕ T ∗E),

where ΓlE(TE ⊕ T ∗E) is the space of linear sections of TE ⊕ T ∗E → E.
In [11], we completely described all VBm,n-gauge-natural (i.e. invariant under the

morphisms in the category VBm,n) operators

C : Γl−clos(
3∧
T ∗) Lin2(Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗),Γl(T ⊕ T ∗))

which, like the twisted Dorfman–Courant bracket, transform closed linear 3-forms

H ∈ Γl−clos
E (

3∧
T ∗E)

on E into bilinear operators

CH : ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E)→ ΓlE(TE ⊕ T ∗E)

(for E a VBm,n-object).
In the present paper, we completely describe all VBm,n-gauge-natural opera-

tors of the same type as in [11], but with bigger domain. Namely, we classify all
VBm,n-gauge-natural operators

C : Γl(
3∧
T ∗) Lin2(Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗),Γl(T ⊕ T ∗))

transforming linear 3-forms H ∈ ΓlE(
∧3

T ∗E) on E into bilinear operators

CH : ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E)→ ΓlE(TE ⊕ T ∗E)

(for E a VBm,n-object). Thus, the main result of the paper is the following theorem.
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Theorem 1.1. Let m ≥ 3 and n ≥ 1 be fixed integers. Any VBm,n-gauge-natural
operator C : Γl(

∧3
T ∗) Lin2(Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗),Γl(T ⊕ T ∗)) is of the form

CH(ρ1, ρ2) = a[X1, X2]⊕ {b1LX1ω2 + b2LX2ω1 + b3diX1ω2 + b4diX2ω1

+ b5LX1diLω
2 + b6LX2diLω

1 + c1iX1iX2H + c2iLiX1iX2dH

+ c3iLiX2diX1H + c4iLiX1diX2H + c5iLdiX2iX1H}
(1.1)

for arbitrary (uniquely determined by C) reals a, b1, b2, b3, b4, b5, b6, c1, c2, c3, c4, c5,
where ρi = Xi ⊕ ωi ∈ ΓlE(TE ⊕ T ∗E), H ∈ ΓlE(

∧3
T ∗E), and where [−,−] is the

usual bracket on vector fields, L is the Lie derivative, d is the exterior derivative,
i is the insertion derivative and L is the Euler vector field.

We have non-trivial operator 0 ⊕ iLiX1iX2dH, which is 0 on closed linear
3-forms H. So, the present paper is an essential extension of [11].

The second result of the paper is the following.
Theorem 1.2. Let m ≥ 4 and n ≥ 1. Any generalized twisted Dorfman–Courant
bracket C (i.e. operator C as above such that C0 is the usual Dorfman–Courant bracket)
satisfying the Jacobi identity in Leibniz form for closed linear 3-forms (i.e.

CH(ρ1, CH(ρ2, ρ3)) = CH(CH(ρ1, ρ2), ρ3) + CH(ρ2, CH(ρ1, ρ3))

for all closed linear 3-forms H ∈ ΓlE(
∧3

T ∗E) and all linear sections ρi = Xi ⊕ ωi ∈
ΓlE(TE ⊕ T ∗E) for i = 1, 2, 3 and all VBm,n-objects E) is of the form

CH(X1 ⊕ ω1, X2 ⊕ ω2) = [X1, X2]⊕ {LX1ω2 − iX2dω1

+ c1iX1iX2H + c2iLiX1iX2dH} (1.2)

for any (not necessarily closed) linear 3-form H ∈ ΓlE(
∧3

T ∗E) and any X1 ⊕ ω1,
X2 ⊕ ω2 ∈ ΓlE(TE ⊕ T ∗E) and any VBm,n-object E, where c1, c2 are arbitrary
(uniquely determined by C) real numbers.

From Theorem 1.2, we have the following interesting natural characterization of
the (usual) twisted Dorfman–Courant bracket.
Corollary 1.3. Let m ≥ 4 and n ≥ 1. Any generalized twisted Dorfman–Courant
bracket CH satisfying the Jacobi identity in Leibniz form for closed linear 3-forms
satisfies

CH(X1 ⊕ ω1, X2 ⊕ ω2) = [[X1 ⊕ ω1, X2 ⊕ ω2]]cH (1.3)

for any closed linear 3-form H ∈ ΓlE(
∧3

T ∗E) and any X1 ⊕ ω1, X2 ⊕ ω2

∈ ΓlE(TE ⊕ T ∗E), where [[−,−]]H is the usual twisted (H-twisted) Dorfman–Courant
bracket and c is an arbitrary (uniquely determined by C) real number.

Roughly speaking, the above corollary means that (for m ≥ 4) the (usual) twisted
Dorfman–Courant bracket [[−,−]]H (for closed linear 3-forms H) is the unique (up to
multiplication of H by a real number c) VBm,n-gauge-natural extension of the (usual)
Dorfman–Courant bracket [[−,−]]0 (by means of closed linear 3-forms H) satisfying
the Jacobi identity in Leibniz form.
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From now on, let Rm,n be the trivial vector bundle over Rm with the standard
fibre Rn and let x1, . . . , xm, y1, . . . , yn be the usual coordinates on Rm,n.

2. THE DORFMAN–COURANT LIKE BRACKETS

Let E = (E →M) be a vector bundle.
Applying the tangent and the cotangent functors to E → M , we obtain double

vector bundles (TE;E, TM ;M) and (T ∗E;E,E∗;M).
A vector field X on E is called linear if it is a vector bundle map X : E → TE

between E → M and TE → TM . Equivalently, a vector field X on E is linear iff
it has expression

X =
m∑

i=1
ai(x1, . . . , xm) ∂

∂xi
+

n∑

j,k=1
bkj (x1, . . . , xm)yj ∂

∂yk

in any local vector bundle trivialization x1, . . . , xm, y1, . . . , yn on E. The Euler vector
field L on E is an example of a linear vector field on E. (We recall that the coordinate
expression of L is L =

∑n
j=1 y

j ∂
∂yj .) Equivalently, a vector field X on E is linear iff

LLX = 0, where L denotes the Lie derivative.
A 1-form ω on E is called linear if it is a vector bundle map ω : E → T ∗E between

E →M and T ∗E → E∗. Equivalently, a 1-form ω on E is linear iff it has expression

ω =
m∑

i=1

n∑

j=1
aij(x1, . . . , xm)yjdxi +

n∑

j=1
bj(x1, . . . , xm)dyj

in any local vector bundle trivialization x1, . . . , xm, y1, . . . , yn on E. Equivalently,
a 1-form ω on E is linear iff LLω = ω, where L is the Euler vector field on E.

We have the following definition being respective modification of the general one
from the fundamental monograph [7].
Definition 2.1. A VBm,n-gauge-natural bilinear operator

A : Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗) Γl(T ⊕ T ∗)
is a VBm,n-invariant family of R-bilinear operators

A : ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E)→ ΓlE(TE ⊕ T ∗E)

for all VBm,n-objects E, where ΓlE(TE ⊕ T ∗E) is the vector space of linear sections
of TE ⊕ T ∗E (couples X ⊕ ω of linear vector fields X and linear 1-forms ω on E).
Remark 2.2. The VBm,n-invariance of A means that if

(X1 ⊕ ω1, X2 ⊕ ω2) ∈ ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E)

and
(X̃1 ⊕ ω̃1, X̃2 ⊕ ω̃2) ∈ Γl

Ẽ
(TẼ ⊕ T ∗Ẽ)× Γl

Ẽ
(TẼ ⊕ T ∗Ẽ))

are ϕ-related by an VBm,n-map ϕ : E → Ẽ (i.e. X̃i◦ϕ = Tϕ◦Xi and ω̃i◦ϕ = T ∗ϕ◦ωi
for i = 1, 2), then so are A(X1 ⊕ ω1, X2 ⊕ ω2) and A(X̃1 ⊕ ω̃1, X̃2 ⊕ ω̃2).
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Remark 2.3. The Dorfman–Courant bracket

[[X1 ⊕ ω1, X2 ⊕ ω2]]0 := [X1, X2]⊕ (LX1ω2 − iX2dω1)

is an example of a VBm,n-gauge-natural bilinear operator

Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗) Γl(T ⊕ T ∗).

Theorem 2.4 ([10]). Let m ≥ 2 and n ≥ 1. Any VBm,n-gauge-natural bilinear
operator

A : Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗) Γl(T ⊕ T ∗)
is of the form

A(X1 ⊕ ω1, X2 ⊕ ω2) = a[X1, X2]⊕ {b1LX1ω2

+ b2LX2ω1 + b3diX1ω2 + b4diX2ω1

+ b5LX1diLω
2 + b6LX2diLω

1}
(2.1)

for arbitrary (uniquely determined by A) reals a, b1, b2, b3, b4, b5, b6, where [−,−] is
the usual bracket on vector fields, L is the Lie derivative, d is the exterior derivative,
i is the insertion derivative and L is the Euler vector field.

3. THE TWISTED DORFMAN–COURANT LIKE BRACKETS

A p-form ω on E is called linear if LLω = ω, where L is the Euler vector field on E.
Equivalently, a p-form ω on E is linear iff it has expression

ω =
∑

ai1,...,ip,j(x)yjdxi1 ∧ . . . ∧ dxip +
∑

bi1,...,ip−1,j(x)dyj ∧ dxi1 ∧ . . . ∧ dxip−1

in any local vector bundle trivialization x1, . . . , xm, y1, . . . , yn on E.

Definition 3.1. A VBm,n-gauge-natural operator

C : Γl(
3∧
T ∗) Lin2(Γl(T ⊕ T ∗)× Γl(T ⊕ T ∗),Γl(T ⊕ T ∗))

sending linear 3-forms H ∈ ΓlE(
∧3

T ∗E) on VBm,n-objects E into R-bilinear operators

CH : ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E)→ ΓlE(TE ⊕ T ∗E)

is a VBm,n-invariant family of regular operators (functions)

C : ΓlE(
3∧
T ∗E)→ Lin2(ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E),ΓlE(TE ⊕ T ∗E))

for all VBm,n-objects E, where Lin2(U ×V,W ) denotes the vector space of all bilinear
(over R) functions U × V →W for any real vector spaces U, V,W .
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Remark 3.2. The invariance of C means that if H ∈ ΓlE(
∧3

T ∗E) and
H̃ ∈ Γl

Ẽ
(
∧3

T ∗Ẽ) are ϕ-related by a VBm,n-map ϕ : E → Ẽ, and

(X1 ⊕ ω1, X2 ⊕ ω2) ∈ ΓlE(TE ⊕ T ∗E)× ΓlE(TE ⊕ T ∗E)

and
(X̃1 ⊕ ω̃1, X̃2 ⊕ ω̃2) ∈ Γl

Ẽ
(TẼ ⊕ T ∗Ẽ)× Γl

Ẽ
(TẼ ⊕ T ∗Ẽ)

are also ϕ-related, then so are CH(X1 ⊕ ω1, X2 ⊕ ω2) and CH̃(X̃1 ⊕ ω̃1, X̃2 ⊕ ω̃2).
The regularity of C means that C transforms smoothly parametrized families
(Ht, X

1
t ⊕ ω1

t , X
2
t ⊕ ω2

t ) into smoothly parametrized families CHt
(X1

t ⊕ ω1
t , X

2
t ⊕ ω2

t ).

Definition 3.3. A VBm,n-gauge-natural operator C in the sense of Definition 3.1
is of order 1 if the following implication

(j1
xH = j1

xH̃, j
1
xρ

1 = j1
xρ̃

1, j1
xρ

2 = j1
xρ̃

2)⇒ CH(ρ1, ρ2)|Ex
= CH̃(ρ̃1, ρ̃2)|Ex

holds for any H, H̃ ∈ ΓlE(
∧3

T ∗E) and any ρ1, ρ2, ρ̃1, ρ̃2 ∈ ΓlE(TE ⊕ T ∗E) and any
VBm,n-object E →M and any x ∈M .

Remark 3.4. The twisted Dorfman–Courant bracket

[[X1 ⊕ ω1, X2 ⊕ ω2]]H := [X1, X2]⊕ {LX1ω2 − iX2dω1 + iX1iX2H} (3.1)

is a gauge natural operator (of order 1) in the sense of Definition 3.1.

The main result is the following classification theorem.

Theorem 3.5. Let C be a VBm,n-gauge-natural operator in the sense of Definition 3.1.
Assume that m ≥ 3 and n ≥ 1. Then there exist uniquely determined real numbers
a, b1, b2, b3, b4, b5, b6, c1, c2, c3, c4, c5 such that

CH(ρ1, ρ2) = a[X1, X2]⊕ {b1LX1ω2 + b2LX2ω1

+ b3diX1ω2 + b4diX2ω1 + b5LX1diLω
2

+ b6LX2diLω
1 + c1iX1iX2H + c2iLiX1iX2dH

+ c3iLiX2diX1H + c4iLiX1diX2H + c5iLdiX2iX1H}

(3.2)

for any H ∈ ΓlE(
∧3

T ∗E) and any ρ1, ρ2 ∈ ΓlE(TE ⊕ T ∗E) and any VBm,n-object E,
where ρ1 = X1 ⊕ ω1 and ρ2 = X2 ⊕ ω2.

Proof. Operator A := C0, where 0 is the zero linear 3-form, can be treated as the
VBm,n-gauge-natural bilinear operator in the sense of Definition 2.1. Then C0 is
described in Theorem 2.4. So, replacing C by C − C0, we can assume

C0 = 0. (3.3)

We will keep this assumption in the rest of this section. The proof of our Theorem 3.5
will be continued after proving several lemmas.
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By the VBm,n-invariance of C, such C is determined by the values

CH(X1 ⊕ ω1, X2 ⊕ ω2)e ∈ TeRm,n ⊕ T ∗e Rm,n (3.4)

for all H ∈ ΓlRm,n(
∧3

T ∗Rm,n) and all X1 ⊕ ω1, X2 ⊕ ω2 ∈ ΓlRm,n(TRm,n ⊕ T ∗Rm,n)
and all e ∈ Rn = {0} ×Rn = Rm,n

0 .
Given e ∈ Rn = {0} × Rn = Rm,n

0 , let Te(Rm × Rn) = Rm × Rn and
T ∗e (Rm ×Rn) = Rm∗ ×Rn∗ be the usual identifications. Let

C1,1
H (X1 ⊕ ω1, X2 ⊕ ω2)e = the Rm-part of CH(X1 ⊕ ω1, X2 ⊕ ω2)e,

C1,2
H (X1 ⊕ ω1, X2 ⊕ ω2)e = the Rn-part of CH(X1 ⊕ ω1, X2 ⊕ ω2)e,

C2,1
H (X1 ⊕ ω1, X2 ⊕ ω2)e = the Rm∗-part of CH(X1 ⊕ ω1, X2 ⊕ ω2)e,

C2,2
H (X1 ⊕ ω1, X2 ⊕ ω2)e = the Rn∗-part of CH(X1 ⊕ ω1, X2 ⊕ ω2)e.

(3.5)

We will keep this notion (3.5) in the rest of this section.

Lemma 3.6. C is of order 1 and CH(X1 ⊕ ω1, X2 ⊕ ω2) is linear in H. Moreover,
CH(X1 ⊕ ω1, X2 ⊕ ω2) is independent of both ω1 and ω2.

Proof. By the invariance of C with respect to ht = ( 1
tx

1, . . . , 1
tx
m, y1, . . . , yn),

we have the homogeneity conditions

tk(µ,ν)Cµ,νH (X1 ⊕ ω1, X2 ⊕ ω2)e
= Cµ,ν(ht)∗H

(t(ht)∗X1 ⊕ t(ht)∗ω1, t(ht)∗X2 ⊕ t(ht)∗ω2)e
(3.6)

for µ, ν = 1, 2, where k(1, 1) = 1, k(1, 2) = 2, k(2, 1) = 3, k(2, 2) = 2. By Corol-
lary 19.9 of the non-linear Petree theorem in [7], we may assume H,X1, X2, ω1, ω2

are polynomial of degree not more than r, where r is an arbitrary finite number.
We can write

(ht)∗H = a2(H)t2 + . . .+ ar+3(H)tr+3,

t(ht)∗X1 = b0(X1) + . . .+ br+3(X1)tr+3,

t(ht)∗ω1 = c1(ω1)t+ . . .+ cr+3(ω1)tr+3,

t(ht)∗X2 = b0(X2) + . . .+ br+3(X2)tr+3,

t(ht)∗ω2 = c1(ω2)t+ . . .+ cr+3(ω2)tr+3.

(3.7)

(The first above expression is because of H is a linear 3-form.) Then the homoge-
neous function theorem and the homogeneity condition (3.6) and the assumption
C0 = 0 complete the first sentence of the lemma. Moreover, they imply that
C1,1
H (X1 ⊕ ω1, X2 ⊕ ω2)e and C1,2

H (X1 ⊕ ω1, X2 ⊕ ω2)e and C2,2
H (X1 ⊕ ω1, X2 ⊕ ω2)e

are independent of ω1 and ω2 for any e in question.
It remains to prove that C2,1

F (X1 ⊕ ω1, X2 ⊕ ω2)e is independent of
both ω1 and ω2, too. For, it is sufficient to show that C2,1

H (0⊕ ω1, 0⊕ ω2)e = 0 and
C2,1
H (X1 ⊕ 0, 0⊕ ω2)e = 0, and C2,1

H (0⊕ ω1, X2 ⊕ 0)e = 0.
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For any τ ∈ R, we can write

C2,1
H (0⊕ ω1, X2 ⊕ 0)τe =

m∑

i=1
aiτdτex

i,

where ai are the real numbers (depending on ω1 and X2 and e and independent of τ).
Using the invariance of C with respect to (x1, . . . , xm, 1

t y
1, . . . , 1

t y
n) (preserving X2

(as X2 is linear) and sending H into tH (as H is linear) and ω1 into tω1 (as ω1 is
linear) and τe into 1

t τe) and that CH(−,−) is linear in H, we get

t2
m∑

i=1
ai

1
t
τd 1

t τe
xi =

m∑

i=1
aiτd 1

t τe
xi .

Then tai = ai, and then ai = 0 for i = 1, . . . ,m. Then C2,1
H (0 ⊕ ω1, X2 ⊕ 0)e = 0,

as well. The proofs of the two other equalities are quite similar.
The lemma is complete.

Lemma 3.7. The vector field part of CH(X1 ⊕ ω1, X2 ⊕ ω2) is zero.

Proof. Let H ∈ ΓlRm,n(
∧3

T ∗Rm,n) and X1⊕ω1, X2⊕ω2 ∈ ΓlRm,n(TRm,n⊕T ∗Rm,n)
and e ∈ Rn = {0} × Rn = Rm,n

0 . By the homogeneity condition from the
proof of Lemma 3.6 and the homogeneous function theorem, we derive that
C1,1
H (X1 ⊕ ω1, X2 ⊕ ω2)e is independent of H, and then it is zero because of the

assumption C0 = 0. Further, for any τ ∈ R, we can write

C1,2
H (X1 ⊕ 0, X2 ⊕ 0)τe =

n∑

k=1
akτ

∂

∂yk |τe
,

where ak are real numbers (depending onX1 andX2 and e and independent of τ). Then,
using the invariance of C with respect to h̃t = (x1, . . . , xm, 1

t y
1, . . . , 1

t y
n) (preserving

X1 and X2 as they are linear, sending H into tH as it is linear, and sending ∂
∂yk |τe

into 1
t
∂
∂yk | 1t τe

, and sending τe into 1
t τe), since CH is linear in H, we get

t

n∑

k=1
ak

1
t
τ
∂

∂yk | 1t τe
=

n∑

k=1
akτ

1
t

∂

∂yk | 1t τe
.

Then ak = 0 for k = 1, . . . , n. Then, applying Lemma 3.6, we get

C1,2
H (X1 ⊕ ω1, X2 ⊕ ω2)e = C1,2

H (X1 ⊕ 0, X2 ⊕ 0)e = 0.

The lemma is complete.
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Lemma 3.8. Under the assumption m ≥ 3, C is determined by the collection

C2,1
y1dx1∧dx2∧dx3

( ∂

∂xi
⊕ 0, ∂

∂xi1
⊕ 0
)
e1
,

C2,1
dy1∧dx1∧dx2

( ∂

∂xi
⊕ 0, yk ∂

∂yk1
⊕ 0
)
e1
,

C2,1
dy1∧dx1∧dx2

(
yk

∂

∂yk1
⊕ 0, ∂

∂xi
⊕ 0
)
e1
,

C2,1
dy1∧dx1∧dx2

( ∂

∂xi
⊕ 0, x3 ∂

∂xi1
⊕ 0
)
e1
,

C2,1
dy1∧dx1∧dx2

(
x3 ∂

∂xi1
⊕ 0, ∂

∂xi
⊕ 0
)
e1
,

C2,2
dy1∧dx1∧dx2

( ∂

∂xi
⊕ 0, ∂

∂xi1
⊕ 0
)
e1

(3.8)

for all i, i1 = 1, . . . ,m and k, k1 = 1, . . . , n, where e1 = (1, 0, . . . , 0) ∈ Rn = Rm,n
0 .

Proof. By Lemmas 3.6 and 3.7 (and their proofs), C is determined by the collection

Cϕ(y)df1(x)∧df2(x)∧df3(x)(X1 ⊕ 0, X2 ⊕ 0)e,
Cf3(x)dϕ(y)∧df1(x)∧df2(x)(X1 ⊕ 0, X2 ⊕ 0)e,
Cdϕ(y)∧dg1(x)∧dg2(x)(X1 ⊕ 0, X2 ⊕ 0)e

(3.9)

for all X1, X2 ∈ ΓlRm,n(TRm,n) and all e ∈ Rn = {0} ×Rn ⊂ Rm,n and all maps

f1, f2, f3, g1, g2 : Rm → R

with
f1(0) = f2(0) = f3(0) = g1(0) = g2(0) = 0

and all linear maps ϕ : Rm → R. Of course, we can assume ϕ(e) = 1 and the rank
of (d0f

1, d0f
2, d0f

3) is maximal and the rank of (d0g
1, d0g

2) is maximal. Then, using
the VBm,n-invariance of C, we can assume e = e1, ϕ = y1, f1 = x1, f2 = x2, f3 = x3

(we use m ≥ 3) and g1 = x1 and g2 = x2. Further, using the
invariance of C with respect to (x1, . . . , xm, y1 + x3y1, y1, . . . , yn)−1, we
can see that the values Cdy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 determine the values
Cd(y1+x3y1)∧dx1∧dx2(X1⊕0, X2⊕0)e1 . Then the values Cdy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1

together with the values Cy1dx1∧dx2∧dx3(X1 ⊕ 0, X2 ⊕ 0)e1 determine the values
Cx3dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 . So, the values Cx3dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1

may be omitted. So, C is determined by the collection of values

C2,1
y1dx1∧dx2∧dx3(X1 ⊕ 0, X2 ⊕ 0)e1 ,

C2,2
y1dx1∧dx2∧dx3(X1 ⊕ 0, X2 ⊕ 0)e1 ,

C2,1
dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 ,

C2,2
dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1

(3.10)
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for all α, β, γ, δ ∈ (N ∪ {0})m and i, i1 = 1, . . . ,m and j, k, j1, k1 = 1, . . . , n, where
(X1 = xα ∂

∂xi or X1 = xβyj ∂
∂yk ) and (X2 = xγ ∂

∂xi1 or X2 = xδyj1 ∂
∂yk1 ), where (of

course) xα := (x1)α1 . . . (xm)αm . We are going to study this collection (3.10).
(i) We start with C2,1

y1dx1∧dx2∧dx3(X1⊕0, X2⊕0)e1 . IfX1 = xα ∂
∂xi andX2 = xγ ∂

∂xi1

then by invariance of C with respect to ht = ( 1
tx

1, . . . , 1
tx
m, y1, . . . , yn), we get

t3+|α|+|γ|−2C2,1
y1dx1∧dx2∧dx3(X1 ⊕ 0, X2 ⊕ 0)e1 = tC2,1

y1dx1∧dx2∧dx3(X1 ⊕ 0, X2 ⊕ 0)e1

and then
C2,1
y1dx1∧dx2∧dx3(X1 ⊕ 0, X2 ⊕ 0)e1 = 0

if |α|+ |γ| 6= 0. Quite similarly,

C2,1
y1dx1∧dx2∧dx3(X1 ⊕ 0, X2 ⊕ 0)e1 = 0

in the rest three sub-cases.
(ii) Now, we pass to C2,2

y1dx1∧dx2∧dx3(X1 ⊕ 0, X2 ⊕ 0)e1 . If X1 = xα ∂
∂xi and

X2 = xγ ∂
∂xi1 then by invariance of C with respect to ht (as above), we get

t3+|α|+|γ|−2C2,2
y1dx1∧dx2∧dx3(X1 ⊕ 0, X2 ⊕ 0)e1 = C2,2

y1dx1∧dx2∧dx3(X1 ⊕ 0, X2 ⊕ 0)e1 ,

and then we have
C2,2
y1dx1∧dx2∧dx3(X1 ⊕ 0, X2 ⊕ 0)e1 = 0.

Quite similarly, we get

C2,2
y1dx1∧dx2∧dx3(X1 ⊕ 0, X2 ⊕ 0)e1 = 0

in the rest three sub-cases.
(iii) Now, we study C2,1

dy1∧dx1∧dx2(X1⊕0, X2⊕0)e1 . IfX1 = xα ∂
∂xi andX2 = xγ ∂

∂xi1

then by the invariance of C with respect to ht, we get

t2+|α|+|γ|−2C2,1
dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 = tC2,1

dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 ,

and then
C2,1
dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 = 0

if |α|+ |γ| 6= 1. Similarly, if X1 = xα ∂
∂xi and X2 = xδyj1 ∂

∂yk1 then

C2,1
dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 = 0

if |α|+ |δ| 6= 0. Similarly, if X1 = xβyj ∂
∂yk and X2 = xγ ∂

∂xi1 , then

C2,1
dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 = 0

if |β|+ |γ| 6= 0. Similarly,

C2,1
dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 = 0
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in the rest sub-case. Further, we can see that the values C2,1
dy1∧dx1∧dx2( ∂

∂xi ⊕ 0,
xi2 ∂

∂xi1 ⊕ 0)e1 are determined by the values C2,1
dy1∧df∧dg(X1 ⊕ 0, hX2 ⊕ 0)e1

for all “constant” vector fields X1 and X2 on Rm (treated as linear vector fields
on Rm,n) and all linear maps f, g, h : Rm → R. Then (of course) we can assume that
f , g, h are linearly independent (we use m ≥ 3). Then, using the invariance of C
with respect to (ϕ(x1, . . . , xm), y1, . . . , yn) for a linear isomorphism ϕ : Rm → Rm,
we can assume f = x1, g = x2 and h = x3. Because of the bi-linearity of CH , we can
else assume that X1 = ∂

∂xi and X2 = ∂
∂xi1 . Quite similarly, one can proceed with

C2,1
dy1∧dx1∧dx2(xi2 ∂

∂xi1 ⊕ 0, ∂
∂xi ⊕ 0)e1 instead of C2,1

dy1∧dx1∧dx2( ∂
∂xi ⊕ 0, xi2 ∂

∂xi1 ⊕ 0)e1 .

(iv) Finally, we study C2,2
dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 . If X1 = xα ∂

∂xi and
X2 = xγ ∂

∂xi1 then by the invariance of C with respect to ht we get

t2+|α|+|γ|−2C2,2
dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 = C2,2

dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 ,

and then
C2,2
dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 = 0

if |α|+ |γ| 6= 0. Quite similarly, C2,2
dy1∧dx1∧dx2(X1 ⊕ 0, X2 ⊕ 0)e1 = 0 in the rest three

sub-cases.
The lemma is complete.

Lemma 3.9. All values C2,2
dy1∧dx1∧dx2( ∂

∂xi ⊕ 0, ∂
∂xi1 ⊕ 0)e1 are zero except (eventually)

of C2,2
dy1∧dx1∧dx2( ∂

∂x1 ⊕ 0, ∂
∂x2 ⊕ 0)e1 and C2,2

dy1∧dx1∧dx2( ∂
∂x2 ⊕ 0, ∂

∂x1 ⊕ 0)e1 . Moreover,
we have

C2,2
dy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= ãde1y
1,

C2,2
dy1∧dx1∧dx2

( ∂

∂x2 ⊕ 0, ∂

∂x1 ⊕ 0
)
e1

= −ãde1y
1,

(3.11)

where ã is the real number (determined by the operator C).

Proof. We can write

C2,2
dy1∧dx1∧dx2

( ∂

∂xi
⊕ 0, ∂

∂xi1
⊕ 0
)
e1

=
n∑

k=1
aii1kde1y

k,

where aii1k ∈ R. Then by invariance of C with respect to ( 1
τ1x

1, . . . , 1
τmx

m, y1, . . . , yn)
we get τ1τ2 1

τ i
1
τ i1 aii1k = aii1k. Then aii1k = 0 if {i, i1} 6= {1, 2}. Further, by the

invariance of C with respect to (x1, . . . , xm, y1, 1
t y

2, . . . , 1
t y
n) we get a12k = ta12k

for k = 2, . . . , n. Then a12k = 0 for k = 2, . . . , n. (If n = 1, this is trivial.) Fur-
ther, by the invariance of C with respect to (x2, x1, x3, . . . , xm, y1, . . . , yn) (replacing
x1 by x2 and vice-versa) we get a12k = −a21k for k = 1, . . . , n. Summing up,
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all values C2,2
dy1∧dx1∧dx2( ∂

∂xi ⊕ 0, ∂
∂xi1 ⊕ 0)e1 are zero except (eventually) of

C2,2
dy1∧dx1∧dx2( ∂

∂x1 ⊕ 0, ∂
∂x2 ⊕ 0)e1 C

2,2
dy1∧dx1∧dx2( ∂

∂x2 ⊕ 0, ∂
∂x1 ⊕ 0)e1 . Moreover,

C2,2
dy1∧dx1∧dx2

( ∂

∂x1 ⊕0, ∂

∂x2 ⊕0
)
e1

= −C2,2
dy1∧dx1∧dx2

( ∂

∂x2 ⊕0, ∂

∂x1 ⊕0
)
e1

= a121de1y
1.

The lemma is complete.

Lemma 3.10. Let m ≥ 3. All values C2,1
y1dx1∧dx2∧dx3( ∂

∂xi ⊕ 0, ∂
∂xi1 ⊕ 0)e1

are equal to zero except (eventually) of C2,1
y1dx1∧dx2∧dx3( ∂

∂x1 ⊕ 0, ∂
∂x2 ⊕ 0)e1 and

C2,1
y1dx1∧dx2∧dx3( ∂

∂x2 ⊕ 0, ∂
∂x1 ⊕ 0)e1 and C2,1

y1dx1∧dx2∧dx3( ∂
∂x3 ⊕ 0, ∂

∂x1 ⊕ 0)e1 and
C2,1
y1dx1∧dx2∧dx3( ∂

∂x1 ⊕ 0, ∂
∂x3 ⊕ 0)e1 and C2,1

y1dx1∧dx2∧dx3( ∂
∂x2 ⊕ 0, ∂

∂x3 ⊕ 0)e1 and
C2,1
y1dx1∧dx2∧dx3( ∂

∂x3 ⊕ 0, ∂
∂x2 ⊕ 0)e1 . Moreover, we have

C2,1
y1dx1∧dx2∧dx3

( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= b̃de1x
3,

C2,1
y1dx1∧dx2∧dx3

( ∂

∂x2 ⊕ 0, ∂

∂x1 ⊕ 0
)
e1

= −b̃de1x
3,

C2,1
y1dx1∧dx2∧dx3

( ∂

∂x3 ⊕ 0, ∂

∂x1 ⊕ 0
)
e1

= b̃de1x
2,

C2,1
y1dx1∧dx2∧dx3

( ∂

∂x1 ⊕ 0, ∂

∂x3 ⊕ 0
)
e1

= −b̃de1x
2,

C2,1
y1dx1∧dx2∧dx3

( ∂

∂x2 ⊕ 0, ∂

∂x3 ⊕ 0
)
e1

= b̃de1x
1,

C2,1
y1dx1∧dx2∧dx3

( ∂

∂x3 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= −b̃de1x
1,

(3.12)

where b̃ is the real number (determined by the operator C).
Proof. We can write

C2,1
y1dx1∧dx2∧dx3

( ∂

∂xi
⊕ 0, ∂

∂xi1
⊕ 0
)
e1

=
m∑

j=1
bii1jde1x

j ,

where bii1j ∈ R. Then by the invariance of C with respect to base homotheties
( 1
τ1x

1, . . . , 1
τmx

m, y1, . . . , yn), we get τ1τ2τ3 1
τ i

1
τ i1 bii1j = τ jbii1j . Then bii1j = 0 if

{i, i1, j} 6= {1, 2, 3}. Further, applying the invariance of C with respect to the permu-
tations of x1, x2, x3 we easily see that b123 = −b213 = b312 = −b132 = −b321 = b231.
The lemma is complete.

Lemma 3.11. All values C2,1
dy1∧dx1∧dx2( ∂

∂xi ⊕ 0, yk ∂
∂yk1 ⊕ 0)e1 are equal to zero except

(eventually) of C2,1
dy1∧dx1∧dx2( ∂

∂x1⊕0, y1 ∂
∂y1⊕0)e1 and C2,1

dy1∧dx1∧dx2( ∂
∂x2⊕0, y1 ∂

∂y1⊕0)e1 .
Moreover, we have

C2,1
dy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0, y1 ∂

∂y1 ⊕ 0
)
e1

= c̃de1x
2

C2,1
dy1∧dx1∧dx2

( ∂

∂x2 ⊕ 0, y1 ∂

∂y1 ⊕ 0
)
e1

= −c̃de1x
1,

(3.13)

where c̃ is the real number (determined by the operator C).
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Proof. We can write

C2,1
dy1∧dx1∧dx2

( ∂

∂xi
⊕ 0, yk ∂

∂yk1
⊕ 0
)
e1

=
m∑

j=1
cikk1jde1x

j ,

where cikk1j are the real numbers. Then by the invariance of C with respect to the
base homotheties ( 1

τ1x
1, . . . , 1

τmx
m, y1, . . . , yn) we get τ1τ2 1

τ i cikk1j = τ jcikk1j . Then
cikk1j = 0 if {i, j} 6= {1, 2}. Further, by the invariance of C with respect to replacing
x1 by x2 (and vice-versa) we get c1kk12 = −c2kk11. Further, by invariance of C with
respect to (x1, . . . , xm, 1

τ1 y
1, 1
τ2 y

2, . . . , 1
τn y

n) with τ1 = 1, we get τk 1
τk1 c1kk12 = c1kk12.

Then c1kk12 = 0 if k 6= k1. Further, if k ∈ {2, . . . , n}, there exists a VBm-map
ψ = (x1, . . . , xm, y1, ψ̃(x2, . . . , xm, y2, . . . , yn)) sending ∂

∂x2 into ∂
∂x2 + yk ∂

∂yk . Then,
using the invariance of C with respect to ψ, from

Cdy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= 0⊕ ãde1y
1,

where ã is from Lemma 3.9, we get

Cdy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0,
( ∂

∂x2 + yk
∂

∂yk

)
⊕ 0
)
e1

= 0⊕ ãde1y
1.

(That C2,1
dy1∧dx1∧dx2( ∂

∂x1 ⊕ 0, ∂
∂x2 ⊕ 0)e1 = 0, see the proof of Lemma 3.8.) Then

Cdy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0, yk ∂

∂yk
⊕ 0
)
e1

= 0⊕ 0

for k = 2, . . . , n. The lemma is complete.

Lemma 3.12. All values C2,1
dy1∧dx1∧dx2(yk ∂

∂yk1 ⊕ 0, ∂
∂xi ⊕ 0)e1 are zero except (even-

tually) of C2,1
dy1∧dx1∧dx2(y1 ∂

∂y1 ⊕ 0, ∂
∂x1 ⊕ 0)e1 and C2,1

dy1∧dx1∧dx2(y1 ∂
∂y1 ⊕ 0, ∂

∂x2 ⊕ 0)e1 .
Moreover, we have

C2,1
dy1∧dx1∧dx2

(
y1 ∂

∂y1 ⊕ 0, ∂

∂x1 ⊕ 0
)
e1

= ẽde1x
2

C2,1
dy1∧dx1∧dx2

(
y1 ∂

∂y1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= −ẽde1x
1,

(3.14)

where ẽ is the real number (determined by C).

Proof. The proof is quite the same as the one of Lemma 3.11. In fact, this lemma is
Lemma 3.11 for Cop instead of C, where

Cop
H (X1 ⊕ ω1, X2 ⊕ ω2) := CH(X2 ⊕ ω2, X1 ⊕ ω1).
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Lemma 3.13. Let m ≥ 3. All values C2,1
dy1∧dx1∧dx2( ∂

∂xi ⊕ 0, x3 ∂
∂xi1 ⊕ 0)e1 are

equal to zero except (eventually) of C2,1
dy1∧dx1∧dx2( ∂

∂x1 ⊕ 0, x3 ∂
∂x2 ⊕ 0)e1 and

C2,1
dy1∧dx1∧dx2( ∂

∂x2 ⊕ 0, x3 ∂
∂x1 ⊕ 0)e1 and C2,1

dy1∧dx1∧dx2( ∂
∂x3 ⊕ 0, x3 ∂

∂x2 ⊕ 0)e1

and C2,1
dy1∧dx1∧dx2( ∂

∂x3 ⊕ 0, x3 ∂
∂x1 ⊕ 0)e1 . Moreover, we have

C2,1
dy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0, x3 ∂

∂x2 ⊕ 0
)
e1

= f̃de1x
3,

C2,1
dy1∧dx1∧dx2

( ∂

∂x2 ⊕ 0, x3 ∂

∂x1 ⊕ 0
)
e1

= −f̃de1x
3,

C2,1
dy1∧dx1∧dx2

( ∂

∂x3 ⊕ 0, x3 ∂

∂x2 ⊕ 0
)
e1

= g̃de1x
1,

C2,1
dy1∧dx1∧dx2

( ∂

∂x3 ⊕ 0, x3 ∂

∂x1 ⊕ 0
)
e1

= −g̃de1x
2,

(3.15)

where f̃ and g̃ are the real numbers (determined by the operator C).

Proof. We can write

C2,1
dy1∧dx1∧dx2

( ∂

∂xi
⊕ 0, x3 ∂

∂xi1
⊕ 0
)
e1

=
m∑

j=1
qii1jde1x

j ,

where qii1j ∈ R are the numbers. Then by the invariance of C with respect to
( 1
τ1x

1, . . . , 1
τmx

m, y1, . . . , yn) we get τ1τ2τ3 1
τ i

1
τ i1 qii1j = τ jqii1j . Then qii1j = 0 if

{i, i1, j} 6= {1, 2, 3}. Further, there exists a 0-preserving embedding ϕ : R → R
sending (the germ at 0 of) ∂

∂x into ∂
∂x +x ∂

∂x . Then, by the invariance of C with respect
to (x1, x2, ϕ(x3), . . . , xm, y1, . . . , yn), from

C2,1
dy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0, ∂

∂x3 ⊕ 0
)
e1

= 0

we get

C2,1
dy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0,
( ∂

∂x3 + x3 ∂

∂x3

)
⊕ 0
)
e1

= 0,

and then

C2,1
dy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0, x3 ∂

∂x3 ⊕ 0
)
e1

= 0,

i.e. q132 = 0. Then using the invariance of C with respect to changing x1 by x2 (and
vice-versa) we get that q231 = −q132 = 0 and q321 = −q312 and q123 = −q213. We put
f̃ := q123 and g̃ := q321. The lemma is complete.
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Lemma 3.14. Let m ≥ 3. All values C2,1
dy1∧dx1∧dx2(x3 ∂

∂xi1 ⊕ 0, ∂
∂xi ⊕ 0)e1 are

equal to zero except (eventually) of B2,1
dy1∧dx1∧dx2(x3 ∂

∂x2 ⊕ 0, ∂
∂x1 ⊕ 0)e1 and

C2,1
dy1∧dx1∧dx2(x3 ∂

∂x1 ⊕ 0, ∂
∂x2 ⊕ 0)e1 and C2,1

dy1∧dx1∧dx2(x3 ∂
∂x2 ⊕ 0, ∂

∂x3 ⊕ 0)e1 and
C2,1
dy1∧dx1∧dx2(x3 ∂

∂x1 ⊕ 0, ∂
∂x3 ⊕ 0)e1 . Moreover, we have

C2,1
dy1∧dx1∧dx2

(
x3 ∂

∂x2 ⊕ 0, ∂

∂x1 ⊕ 0
)
e1

= h̃de1x
3,

C2,1
dy1∧dx1∧dx2

(
x3 ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= −h̃de1x
3,

C2,1
dy1∧dx1∧dx2

(
x3 ∂

∂x2 ⊕ 0, ∂

∂x3 ⊕ 0
)
e1

= k̃de1x
1,

C2,1
dy1∧dx1∧dx2

(
x3 ∂

∂x1 ⊕ 0, ∂

∂x3 ⊕ 0
)
e1

= −k̃de1x
2,

(3.16)

where h̃ and k̃ are the real numbers (determined by the operator C).

Proof. The proof is almost the same as the one of Lemma 3.13. In fact, this lemma is
Lemma 3.13 for Cop instead of C.

Lemma 3.15. Let m ≥ 3. We have

f̃ = ã+ c̃ (3.17)

where ã is the real number from Lemma 3.9 and c̃ is the real number from Lemma
3.11 and f̃ is the number from Lemma 3.13.

Proof. Given a positive number τ , ψτ := (x1, x2

1+τx3 , x
3, . . . , xm, y1, . . . , yn) preserves

e1 and ∂
∂x1 and sends dy1 ∧ dx1 ∧ dx2 into dy1 ∧ dx1 ∧ d(x2 + τx2x3) and ∂

∂x2 into
1

1+τx3
∂
∂x2 . Moreover, by the invariance of C with respect to the base homotheties

( 1
tx

1, . . . , 1
tx
m, y1, . . . , yn), we can easily see that

C2,1
dy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= 0.

Then, by the invariance of C with respect to ψτ , we get

C2,1
dy1∧dx1∧d(x2+τx2x3)

( ∂

∂x1 ⊕ 0, 1
1 + τx3

∂

∂x2 ⊕ 0
)
e1

= 0.

Then by the order argument, we get

C2,1
dy1∧dx1∧d(x2+τx2x3)

( ∂

∂x1 ⊕ 0, (1− τx3) ∂

∂x2 ⊕ 0
)
e1

= 0.

Then, comparing the coefficients on τ of both sides of this equality, we easily get

C2,1
dy1∧dx1∧dx2

( ∂

∂x1 ⊕0, x3 ∂

∂x2 ⊕0
)
e1

= C2,1
dy1∧dx1∧d(x2x3)

( ∂

∂x1 ⊕0, ∂

∂x2 ⊕0
)
e1
. (3.18)
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Further, by the invariance of C with respect to (x1, . . . , xm, 1
1+x3 y

1, y2, . . . , yn),
from

Cdy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= 0⊕ ãde1y
1,

we get

Cd(y1+x3y1)∧dx1∧dx2

( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= 0⊕ (ãde1y
1 + ãde1x

3),

and then
C2,1
d(x3y1)∧dx1∧dx2

( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= ãde1x
3, (3.19)

where ã is the number from Lemma 3.9.
Further, by the invariance of C with respect to (x1, 1

tx
2, x3, . . . , xm, y1, . . . , yn),

we can easily see that

Cdy1∧dx1∧dx3( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0)e1 = 0⊕ 0.

Then, by the invariance of C with respect to (x1, . . . , xm, 1
1+τx2 y

1, y2, . . . , yn), we get

Cd(y1+τx2y1)∧dx1∧dx3

( ∂

∂x1 ⊕ 0,
( ∂

∂x2 −
τ

1 + τx2 y
1 ∂

∂y1

)
⊕ 0
)
e1

= 0⊕ 0,

and then (by the order argument and comparing the coefficients on τ) we get

C2,1
d(x2y1)∧dx1∧dx3

( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= C2,1
dy1∧dx1∧dx3

( ∂

∂x1 ⊕ 0, y1 ∂

∂y1 ⊕ 0
)
e1
.

Further, by the invariance of C with respect to (x1, x2 + x3, x3, . . . , xm, y1, . . . , yn),
from the first equality of (3.13), we get

C2,1
dy1∧dx1∧(dx2−dx3)

( ∂

∂x1 ⊕ 0, y1 ∂

∂y1 ⊕ 0
)
e1

= c̃de1(x2 − x3),

and then
C2,1
dy1∧dx1∧dx3

( ∂

∂x1 ⊕ 0, y1 ∂

∂y1 ⊕ 0
)
e1

= c̃de1x
3,

where c̃ is the number from Lemma 3.11. Then

C2,1
d(x2y1)∧dx1∧dx3

( ∂

∂x1 ⊕ 0, ∂

∂x2 ⊕ 0
)
e1

= c̃de1x
3. (3.20)

Now, from (3.15), (3.18), (3.19) and (3.20), since

d(x3y1) ∧ dx1 ∧ dx2 + d(x2y1) ∧ dx1 ∧ dx3 = dy1 ∧ dx1 ∧ d(x2x3),

we get
f̃de1x

3 = C2,1
dy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0, x3 ∂

∂x2 ⊕ 0
)
e1

= (ã+ c̃)de1x
3,

as well. The lemma is complete.
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Lemma 3.16. Let m ≥ 3. We have

h̃ = −ã+ ẽ, (3.21)

where ã is the real number from Lemma 3.9 and ẽ is the real number from
Lemma 3.12 and h̃ is the number from Lemma 3.14.

Proof. In fact, this lemma is Lemma 3.15 for Cop instead of C. So, the proof is almost
the same as the one of Lemma 3.15.

Lemma 3.17. Let m ≥ 3. We have

f̃ + g̃ + k̃ + h̃ = 0, (3.22)

where f̃ and g̃ are the numbers from Lemma 3.13 and h̃ and k̃ are the numbers from
Lemma 3.14.

Proof. By the invariance of C with respect to (x1 + τx3, x2, . . . , xm, y1, . . . , yn), from
the third equality of (3.15) we get

C2,1
dy1∧d(x1−τx3)∧dx2

(( ∂

∂x3 + τ
∂

∂x1

)
⊕ 0, x3 ∂

∂x2 ⊕ 0
)
e1

= g̃de1(x1 − τx3),

and then considering the coefficients on τ and using the first equation of (3.15)
we obtain

−C2,1
dy1∧dx3∧dx2

( ∂

∂x3 ⊕ 0, x3 ∂

∂x2 ⊕ 0
)
e1

+ f̃de1x
3 = −g̃de1x

3.

Then using (in particular) the invariance of C with replacing x3 by x1 (and vice-versa)
we get

C2,1
dy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0, x1 ∂

∂x2 ⊕ 0
)
e1

= (g̃ + f̃)de1x
1. (3.23)

Quite similarly, using (3.16) instead of (3.15) we get

C2,1
dy1∧dx1∧dx2

(
x1 ∂

∂x2 ⊕ 0, ∂

∂x1 ⊕ 0
)
e1

= (k̃ + h̃)de1x
1 . (3.24)

(In fact, the equality (3.24) is the equality (3.23) for Cop instead of C.)
Next, by invariance of C with respect to (x1, x2 + τ(x1)2, x3, . . . , xm, y1, . . . , yn),

from C2,1
dy1∧dx1∧dx2( ∂

∂x1 ⊕ 0, ∂
∂x1 ⊕ 0)e1 = 0, we get

C2,1
dy1∧dx1∧d(x2−τ(x1)2)

(( ∂

∂x1 + 2τx1 ∂

∂x2

)
⊕ 0,

( ∂

∂x1 + 2τx1 ∂

∂x2

)
⊕ 0
)
e1

= 0,

and then considering the coefficients on τ we get

C2,1
dy1∧dx1∧dx2

( ∂

∂x1 ⊕ 0, x1 ∂

∂x2 ⊕ 0
)
e1

+ C2,1
dy1∧dx1∧dx2

(
x1 ∂

∂x2 ⊕ 0, ∂

∂x1 ⊕ 0
)
e1

= 0.
(3.25)

From (3.25), (3.24) and (3.23) we obtain (3.22), as well. The lemma is complete.
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We continue the proof of Theorem 3.5. By Lemmas 3.6–3.17, any
VBm,n-gauge-natural operator C with C0 = 0 is uniquely determined by the cor-
responding 5-tuple (ã, b̃, c̃, g̃, k̃). Further, one can easily directly compute the corre-
sponding 5-tuples of VBm,n-gauge natural operators 0⊕ iX1iX2H and 0⊕ iLiX1iX2dH
and 0 ⊕ iLiX2diX1H and 0 ⊕ iLiX1diX2H and 0 ⊕ iLdiX2iX1H. They are equal
to (−1,−1, 1, 0, 0) and (0,−1, 0, 0, 0) and (0,−1, 0, 0, 1) and (0, 1,−1, 1, 0) and
(0, 1,−1, 0, 0), respectively. The determinant of the matrix of the above vectors is 1.
So, the dimension argument complete Theorem 3.5.

4. THE GENERALIZED TWISTED DORFMAN–COURANT BRACKETS
WITH THE JACOBI IDENTITY IN LEIBNIZ FORM

Definition 4.1. Let C be a VBm,n-gauge-natural operator in the sense of Definition 3.1.
We say that C is a generalized twisted Dorfman–Courant bracket if C0 is the (usual)
Dorfman–Courant bracket.

Corollary 4.2. Let m ≥ 3 and n ≥ 1. Any generalized twisted Dorfman–Courant
bracket C is of the form

CH(X1 ⊕ ω1, X2 ⊕ ω2) = [X1, X2]⊕ {LX1ω2 − iX2dω1

+ c1iX1iX2H + c2iLiX1iX2dH + c3iLiX2diX1H

+ c4iLiX1diX2H + c5iLdiX2iX1H}
(4.1)

for any H ∈ ΓlE(
∧3

T ∗E) and any X1 ⊕ ω1, X2 ⊕ ω2 ∈ ΓlE(TE ⊕ T ∗E) and any
VBm,n-object E, where c1, c2, c3, c4, c5 are (uniquely determined by C) real numbers.

Proof. It is a immediate consequence of Theorem 3.5.

Definition 4.3. We say that a generalized twisted Dorfman–Courant bracket C
satisfies the Jacobi identity in Leibniz form for closed linear 3-forms if

CH(ρ1, CH(ρ2, ρ3)) = CH(CH(ρ1, ρ2), ρ3) + CH(ρ2, CH(ρ1, ρ3)) (4.2)

for all closed linear 3-forms H ∈ ΓlE(
∧3

T ∗E) and all linear sections ρi = Xi ⊕ ωi ∈
ΓlE(TE ⊕ T ∗E) for i = 1, 2, 3 and all VBm,n-objects E.

Remark 4.4. It is well-known that the twisted Dorfman-Courant bracket
(i.e. the generalized one satisfying (4.1) with (c1, c2, c3, c4, c5) = (1, 0, 0, 0, 0)) satisfies
the Jacobi identity in Leibniz form for closed linear 3-forms.
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Lemma 4.5. Let C be a generalized twisted Dorfman–Courant bracket of the form
(4.1). If C satisfies the Jacobi identity in Leibniz form for closed linear 3-forms, then

c1LX1iX2iX3H + c3LX1iLiX3diX2H

+ c4LX1iLiX2diX3H + c5LX1iLdiX3iX2H

+ c1iX1i[X2,X3]H + c3iLi[X2,X3]diX1H

+ c4iLiX1di[X2,X3]H + c5iLdi[X2,X3]iX1H

= −c1iX3diX1iX2H − c3iX3diLiX2diX1H

− c4iX3diLiX1diX2H − c5iX3diLdiX2iX1H

+ c1i[X1,X2]iX3H + c3iLiX3di[X1,X2]H

+ c4iLi[X1,X2]diX3H + c5iLdiX3di[X1,X2]H

+ c1LX2iX1iX3H + c3LX2iLiX3diX1H

+ c4LX2iLiX1diX3H + c5LX2iLdiX3iX1H

+ c1iX2i[X1,X3]H + c3iLi[X1,X3]diX2H

+ c4iLiX2di[X1,X3]H + c5iLdi[X1,X3]iX2H

(4.3)

for any linear vector fields X1, X2, X3 and any closed linear 3-form H on E.
Proof. For any linear vector fields X1, X2, X3 on E and any closed linear 3-form H
on E, we can write

CH(X1 ⊕ 0, CH(X2 ⊕ 0, X3 ⊕ 0)) = [X1, [X2, X3]]⊕ Ω,

CH(CH(X1 ⊕ 0, X2 ⊕ 0), X3 ⊕ 0) = [[X1, X2], X3]⊕Θ,
CH(X2 ⊕ 0, CH(X1 ⊕ 0, X3 ⊕ 0)) = [X2, [X1, X3]]⊕ T ,

where
Ω = c1LX1iX2iX3H + c3LX1iLiX3diX2H

+ c4LX1iLiX2diX3H + c5LX1iLdiX3iX2H

+ c1iX1i[X2,X3]H + c3iLi[X2,X3]diX1H

+ c4iLiX1di[X2,X3]H + c5iLdi[X2,X3]iX1H,

Θ = −c1iX3diX1iX2H − c3iX3diLiX2diX1H

− c4iX3diLiX1diX2H − c5iX3diLdiX2iX1H

+ c1i[X1,X2]iX3H + c3iLiX3di[X1,X2]H

+ c4iLi[X1,X2]diX3H + c5iLdiX3di[X1,X2]H,

T = c1LX2iX1iX3H + c3LX2iLiX3diX1H

+ c4LX2iLiX1diX3H + c5LX2iLdiX3iX1H

+ c1iX2i[X1,X3]H + c3iLi[X1,X3]diX2H

+ c4iLiX2di[X1,X3]H + c5iLdi[X1,X3]iX2H.

If C satisfies the Jacobi identity in Leibniz form of C for closed linear 3-forms,
then Ω = Θ + T , i.e. (4.3). The lemma is complete.
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Lemma 4.6. Let C be a generalized twisted Dorfman–Courant bracket of
the form (4.1). If C satisfies the Jacobi identity in Leibniz form for closed linear
3-forms, then

c3LX1iLiX3diX2H

+ c4LX1iLiX2diX3H + c5LX1iLdiX3iX2H

+ c3iLi[X2,X3]diX1H

+ c4iLiX1di[X2,X3]H + c5iLdi[X2,X3]iX1H

= −c3iX3diLiX2diX1H+
− c4iX3diLiX1diX2H − c5iX3diLdiX2iX1H

+ c3iLiX3di[X1,X2]H

+ c4iLi[X1,X2]diX3H + c5iLdiX3di[X1,X2]H

+ c3LX2iLiX3diX1H

+ c4LX2iLiX1diX3H + c5LX2iLdiX3iX1H

+ c3iLi[X1,X3]diX2H

+ c4iLiX2di[X1,X3]H + c5iLdi[X1,X3]iX2H

(4.4)

for any linear vector fields X1, X2, X3 and any closed linear 3-form H on Rm,n.

Proof. It is well-known that the (usual) twisted Dorfman–Courant bracket satisfies
the Jacobi identity in Leibniz form for closed linear 3-forms. So, we have (4.3) in the
case c3 = c4 = c5 = 0. So, formula (4.3) is equivalent to (4.4) for all linear vector fields
X1, X2, X3, X4 and all closed linear 3-forms H on E.

Lemma 4.7. Let C be a generalized twisted Dorfman–Courant bracket of
the form (4.1). Assume m ≥ 4 and n ≥ 1. If C satisfies the Jacobi identity in
Leibniz form for closed linear 3-forms, then c3 = c4 = c5 = 0.

Proof. Putting linear vector fields X1 = ∂
∂x1 and X2 = ∂

∂x2 and X3 = L and closed
linear 3-form H = x1dx1 ∧ dx2 ∧ dy1 into (4.4), we get

c3 · 0 + c4 · (y1dx1) + c5 · (y1dx1) + c3 · 0 + c4 · 0 + c5 · 0
= −c3 · y1dx1 − c4 · 0− c5 · (−y1dx1) + c3 · 0 + c4 · 0 + c5 · 0

+ c3 · 0 + c4 · 0 + c5 · 0 + c3 · 0 + c4 · 0 + c5 · 0.

Hence c3 = −c4.
Similarly, putting linear vector fields X1 = x2 ∂

∂x1 and X2 = ∂
∂x2 and X3 = L and

closed linear 3-form H = dx1 ∧ dx2 ∧ dy1 into (4.4), we get

c3 · 0 + c4 · y1dx2 + c5 · y1dx2 + c3 · 0 + c4 · 0 + c5 · 0
= −c3 · 0− c4 · 0− c5 · (−y1dx2) + c3 · 0 + c4 · y1dx2 + c5 · 0

+ c3 · 0 + c4 · (−y1dx2) + c5 · (−y1dx2) + c3 · 0 + c4 · 0 + c5 · 0.

Hence c4 = −c5.
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Similarly, putting linear vector fields X1 = ∂
∂x1 and X2 = x1 ∂

∂x2 and X3 = ∂
∂x3

and closed linear 3-form H = d(x2x4) ∧ dx3 ∧ dy1 into (4.4), we get

c3 · y1dx4 + c4 · 0 + c5 · (−y1dx4) + c3 · 0 + c4 · 0 + c5 · 0
= −c3 · 0− c4 · (y1dx4 + x4dy1)− c5 · 0 + c3 · y1dx4 + c4 · 0 + c5 · 0

+ c3 · 0 + c4 · 0 + c5 · 0 + c3 · 0 + c4 · 0 + c5 · 0.

Hence c4 = 0.
Consequently, c3 = c4 = c5 = 0, as well.

Thus we have the following result.

Theorem 4.8. Let m ≥ 4 and n ≥ 1. Any generalized twisted Dorfman–Courant
bracket C satisfying the Jacobi identity in Leibniz form for closed linear 3-forms
is of the form

CH(X1 ⊕ ω1, X2 ⊕ ω2) = [X1, X2]⊕ {LX1ω2 − iX2dω1

+ c1iX1iX2H + c2iLiX1iX2dH} (4.5)

for any H ∈ ΓlE(
∧3

T ∗E) and any X1 ⊕ ω1, X2 ⊕ ω2 ∈ ΓlE(TE ⊕ T ∗E) and any
VBm,n-object E, where c1, c2 are (uniquely determined by C) real numbers.

Moreover, given c1, c2 ∈ R, the generalized twisted Dorfman–Courant bracket C of
the form (4.5) satisfies the Jacobi identity in Leibniz form for closed linear 3-forms.

Proof. The last sentence is an easy consequence of the fact that the usual twisted
Dorfman–Courant bracket satisfies the Jacobi identity in Leibniz form for closed linear
3-forms.

From Theorem 4.8, we have the following interesting natural characterization of
the (usual) twisted Dorfman–Courant bracket.

Corollary 4.9. Let m ≥ 4 and n ≥ 1. Any generalized twisted Dorfman–Courant
bracket CH satisfying the Jacobi identity in Leibniz form for closed linear 3-forms
satisfies

CH(X1 ⊕ ω1, X2 ⊕ ω2) = [[X1 ⊕ ω1, X2 ⊕ ω2]]cH (4.6)

for any closed linear 3-form H ∈ ΓlE(
∧3

T ∗E) and any X1 ⊕ ω1, X2 ⊕ ω2 ∈
ΓlE(TE ⊕ T ∗E), where [[−,−]]H is the usual twisted (H-twisted) Dorfman–Courant
bracket and c is an arbitrary (uniquely determined by C) real number.

Remark 4.10. Roughly speaking, the above corollary means that (for m ≥ 4)
the (usual) twisted Dorfman–Courant bracket [[−,−]]H (for closed linear 3-forms H)
is the unique (up to multiplication of H by a real number c) VBm,n-gauge-natural
extension of the (usual) Dorfman–Courant bracket [[−,−]]0 (by means of closed linear
3-forms H) satisfying the Jacobi identity in Leibniz form.
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