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Abstract. All VB, ,-gauge-natural operators C' sending linear 3-forms H € I'g( /\3 T°FE)
on a smooth (C*°) vector bundle E into R-bilinear operators

Cu :T5(TE®T*E) x Ty (TE®T*E) —» I'y(TE® T*E)

transforming pairs of linear sections of TE®T*FE — E into linear sections of TE®T*E — E
are completely described. The complete descriptions is given of all generalized twisted
Dorfman—Courant brackets C' (i.e. C' as above such that Cp is the Dorfman—Courant bracket)
satisfying the Jacobi identity for closed linear 3-forms H. An interesting natural characteriza-
tion of the (usual) twisted Dorfman—Courant bracket is presented.
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1. INTRODUCTION

All manifolds considered in the paper are assumed to be Hausdorff, second countable,
finite dimensional, without boundary, and smooth (of class C*°). Maps between
manifolds are assumed to be C*.

In [3], the authors completely described bilinear operators on sections of the
Whitney sum TN @ T*N — N of the tangent and cotangent bundles (for N a smooth
manifold), which are M f,,,-natural, i.e. invariant under the morphisms in the category
M [y, of m-dimensional manifolds and their submersions. The Courant bracket, defined
in [2], is an example of such operators and it is of particular interest, because it involves
in the concepts of Dirac and generalized complex structures on N, see [2,4,5]

A simple (but very important) modification of the Courant bracket is the so
called twisted (or H-twisted) Courant bracket [—, —] g on sections of TN @ T*N — N
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for any 3-form H on a smooth manifold N. The properties of [—,—]g (for
closed H) were used in [8,12] to define the concept of exact Courant algebroid.
In [9], we completely described all M f,,,-natural operators which send 3-forms H on
N into bilinear operators on sections of TN @ T*N — N (for N a smooth manifold).

The restriction of the Courant bracket to linear sections of TE @ T*E — E (for
E — M a smooth vector bundle) is called the Dorfman—Courant bracket, see [6].
It is of particular interest, because (T'E @ T*E; E, TM @ E*; M) is the standard
VB-Courant algebroid and the Dorfman—Courant bracket is the part of this structure.
(The Dorfman—Courant bracket can be also interpreted as the bracket of the Omni-Lie
algebroid Der(E*) @ J(E*), studied in [1].)

In [10], we completely described all bilinear operators on linear sections of
TE®T*E — E (for E — M a smooth vector bundle), which are VB,, ,-gauge-
-natural, i.e. invariant under the morphisms in the category VB, ,, of rank-n vector
bundles over m-dimensional bases and their vector bundle isomorphisms onto images.
The Dorfman—Courant bracket is an example of such a VB, ,-gauge natural bilinear
operator

A:TY(TE®T*E) xTY(TE® T*E) — Ty (TE © T*E),

where I',(TE @ T*FE) is the space of linear sections of TE @ T*E — E.
In [11], we completely described all VB, ,-gauge-natural (i.e. invariant under the
morphisms in the category VB, ) operators

3
C: TS\ T*) ~ Ling(P(T & T%) x THT @ T*),THT & T*))

which, like the twisted Dorfman—Courant bracket, transform closed linear 3-forms
3
HeT (N\TE)
on F into bilinear operators
Cy :TS(TE®T'E) x T (TE® T*E) — I'y(TE ® T*E)

(for E a VB, n-object).

In the present paper, we completely describe all VB,, ,-gauge-natural opera-
tors of the same type as in [11], but with bigger domain. Namely, we classify all
VB, n-gauge-natural operators

3
C:TYN\T*) ~ LingT(T & T*) x (T & T*),I(T & T*))

transforming linear 3-forms H € I',(A® T*E) on E into bilinear operators
Cy:TH(TE®@T'E)xTYW(TE® T*E) - T (TE & T*E)

(for E a VB,, n-object). Thus, the main result of the paper is the following theorem.
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Theorem 1.1. Let m > 3 and n > 1 be fized integers. Any VB, n-gauge-natural
operator C : T{(\> T*) ~» Ling(T{(T & T*) x THT & T*),T(T & T*)) is of the form

Cu(p', p?) = a[ X', X% @ {b1 L x10° + b L x2w" + b3dix1w? + bydixow®
+bsLxrdipw? + bgLxadipwt + crixrix2H + coipixiix2dH  (1.1)
+esipixedixtH 4 cqipixidix2 H + csipdix2ix1 H}

for arbitrary (uniquely determined by C) reals a,by,bs,bs, by, bs,bg, c1,Ca,C3, C4,C5,
where pt = X' @ w' € TL(TE & T*E), H € TL(A* T*E), and where [—,—] is the
usual bracket on vector fields, L is the Lie derivative, d is the exterior derivative,
1 1s the insertion derivative and L is the Euler vector field.

We have non-trivial operator 0 @ ipix1ix2dH, which is 0 on closed linear
3-forms H. So, the present paper is an essential extension of [11].
The second result of the paper is the following.

Theorem 1.2. Let m > 4 and n > 1. Any generalized twisted Dorfman—Courant
bracket C (i.e. operator C' as above such that Cy is the usual Dorfman—Courant bracket)
satisfying the Jacobi identity in Leibniz form for closed linear 3-forms (i.e.

Cup".Cu(p®,p*)) = Cu(Cu(p", p%),p*) + Cu(p®, Culp*, p*))

for all closed linear 3-forms H € FZE(/\3 T*E) and all linear sections p' = X' @ w' €
I'ATE @ T*E) fori=1,2,3 and all VB, ,-objects E) is of the form

Cu(X'owh, X?20w?) = [XY, X2 @ {Lx1w? —ixadw’

- L (1.2)

+ crixiix2 H + coipixiix2dH}
for any (not necessarily closed) linear 3-form H € Ty (N> T*E) and any X' & w?,
X2qpuw?e FZE(TE@T*E) and any VBp, n-object E, where ci,co are arbitrary
(uniquely determined by C) real numbers.

From Theorem 1.2, we have the following interesting natural characterization of
the (usual) twisted Dorfman—Courant bracket.

Corollary 1.3. Let m > 4 and n > 1. Any generalized twisted Dorfman—Courant
bracket C'y satisfying the Jacobi identity in Leibniz form for closed linear 3-forms
satisfies

Cu(X'ouw, X?0w?) =[[X'®ow, X?®wln (1.3)
for any closed linear 3-form H € Fﬂg(/\3 T*E) and any X' © w!', X? © w?
€T (TE @ T*E), where [[—, —||u is the usual twisted (H-twisted) Dorfman-Courant

bracket and c is an arbitrary (uniquely determined by C) real number.

Roughly speaking, the above corollary means that (for m > 4) the (usual) twisted

Dorfman-Courant bracket [[—, —]]z (for closed linear 3-forms H) is the unique (up to
multiplication of H by a real number ¢) VB, ,-gauge-natural extension of the (usual)
Dorfman—Courant bracket [[—, —]]o (by means of closed linear 3-forms H) satisfying

the Jacobi identity in Leibniz form.
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From now on, let R™" be the trivial vector bundle over R™ with the standard
fibre R™ and let !, ..., 2™, y', ..., 4™ be the usual coordinates on R™™.

2. THE DORFMAN-COURANT LIKE BRACKETS

Let E = (E — M) be a vector bundle.

Applying the tangent and the cotangent functors to £ — M, we obtain double
vector bundles (T'E; E,TM;M) and (T*E; E, E*; M).

A vector field X on F is called linear if it is a vector bundle map X : E — TFE
between £ — M and TE — TM. Equivalently, a vector field X on F is linear iff
it has expression

- 0 - 0
, . .
X = Za’(x17...7mm)6xi + Z bj(x17...,xm)yja—yk
i=1 k=1
in any local vector bundle trivialization z',...,2™,y',...,y™ on E. The Euler vector

field L on E is an example of a linear vector field on E. (We recall that the coordinate
expression of L is L = Z;.Lzl Y7 (%j.) Equivalently, a vector field X on F is linear iff
L1 X =0, where £ denotes the Lie derivative.

A 1-form w on F is called linear if it is a vector bundle map w : £ — T*E between
E — M and T*E — E*. Equivalently, a 1-form w on FE is linear iff it has expression

w= ZZaij(xl, o™yl dat 4 ij(xl, ™) dy?
i=1j=1 j=1

in any local vector bundle trivialization z',...,z™,y%,...,y" on E. Equivalently,
a l-form w on F is linear iff L w = w, where L is the Euler vector field on E.

We have the following definition being respective modification of the general one
from the fundamental monograph [7].

Definition 2.1. A VB,, ,-gauge-natural bilinear operator
AT TeT)xTTeT*) ~»TH{T & T
is a VB,, n-invariant family of R-bilinear operators
AT (TEQT*E)x Ty (TE®T*E) - T5(TE ® T*E)

for all VB, ,-objects E, where I'y,(TE @ T*FE) is the vector space of linear sections
of TE & T*E (couples X @ w of linear vector fields X and linear 1-forms w on E).

Remark 2.2. The VB, ,-invariance of A means that if
X'eow, X?0w?) eTL(TE® T*E) x Ty (TE © T*E)
and
(X'@o', X?00?) eTL(TE® T E) x ', (TE ® T*E))
are p-related by an VB, ,-map ¢ : E — E (ie. Xtop :~T<p0Xi and @lop =T*pow!
for i = 1,2), then so are A(X' @ w!, X% ® w?) and A(X! @ @t, X2 ¢ @?).
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Remark 2.3. The Dorfman—Courant bracket
[X'ow, X2@w:= X, X @ (Lx1w? —ix2dw)
is an example of a VB,, ,-gauge-natural bilinear operator
TNToT)xTH{T o T*) ~»THT & T").

Theorem 2.4 ([10]). Let m > 2 and n > 1. Any VB, »-gauge-natural bilinear
operator
A:TTeT)xTTeT*) T T & T

is of the form
AX'ow, X2 wh) =al X', X% @ (i Lx1w?
+ boLx2wt + badix1w? + badix2w" (2.1)
+bsLx1dipw?® 4+ bgLx2dipw'}

for arbitrary (uniquely determined by A) reals a,by,bs,bs, by, bs, bs, where [—, —] is
the usual bracket on vector fields, L is the Lie derivative, d is the exterior derivative,
1 is the insertion derivative and L is the Euler vector field.

3. THE TWISTED DORFMAN-COURANT LIKE BRACKETS

A p-form w on F is called linear if Lyw = w, where L is the Euler vector field on E.
Equivalently, a p-form w on F is linear iff it has expression

W= Zaih,,,,imj(x)yjdxil A ANdzr + Zbih,,,,ipfhj(x)dyj Adz™ AL A dztrt

1 m

in any local vector bundle trivialization z!,...,z™,y',...,y™ on E.

Definition 3.1. A VB, ,-gauge-natural operator

3
C:THN\T*) ~ Lina(T(T & T%) x THT & T*),TH(T & T*))
sending linear 3-forms H € T'( A’ T*E) on VB, n-objects E into R-bilinear operators
Cy :T"(TE®T*E) x T (TE® T*FE) — I (TE © T*E)

is a VB, p-invariant family of regular operators (functions)

3
C: FlE(/\ T*E) — LinyT(TE @ T*E) x TY(TE © T*E), Ty (TE © T*E))

for all VB, n-objects E, where Ling(U x V, W) denotes the vector space of all bilinear
(over R) functions U x V' — W for any real vector spaces U, V, W.
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Remark 3.2. The invariance of C' means that if H € TL(A’T*E) and
He F%(/\?’ T*E) are p-related by a VB, p-map ¢ : £ — E, and

(X'ew', X?0uw?) eTH(TE®T*E) x T'y(TE ® T*E)
and 3 3 3 . } 3
(X'@a', X’ 00*) eTL(TE®T*E) x T, (TE ® T*E)

are also p-related, then so are Cy (X' @ w', X2 @ w?) and Cz(X' @ &', X? @ @?).
The regularity of C' means that C transforms smoothly parametrized families
(Hy, X} & w}, X? & w?) into smoothly parametrized families Cy, (X} @ wi, X? & w?).

Definition 3.3. A VB,, ,-gauge-natural operator C in the sense of Definition 3.1
is of order 1 if the following implication

(ol =2l Gop" = 320" 520" = 320°) = Cu(p', )15, = C (5", %),
holds for any H, H € Fﬂg(/\3 T*E) and any p', p?, p*, p*> € TL(TE & T*E) and any
VB, n-object E — M and any x € M.
Remark 3.4. The twisted Dorfman—Courant bracket

[X'ewh, X2 oWy = X', X2 @ {Lx1w? —ix2dw' +ix1ix2H} (3.1)

is a gauge natural operator (of order 1) in the sense of Definition 3.1.
The main result is the following classification theorem.

Theorem 3.5. Let C be a VB, »-gauge-natural operator in the sense of Definition 5.1.
Assume that m > 3 and n > 1. Then there exist uniquely determined real numbers
a, b17 b27 b37 b47 b57 b67 C1,C2,C3,C4,Cs such that
Cu(p', p?) = a[ X', X?] @ {1 Lx1w? + ba L x2w?
+ bgdiX1o.)2 + b4dix2w1 + b5£X1diLw2 (3.2)
+bﬁﬁxzdiLw1+CliX1iX2H+CQiLiX1iX2dH .
+ C3iLix2dile =+ C4iLixldix2H =+ C5iLdix2ile}

for any H € 1"lE(/\3 T*E) and any p*, p* € T'y(TE & T*E) and any VB, »-object E,
where pt = X' @ w! and p* = X? @ w?.

Proof. Operator A := Cj, where 0 is the zero linear 3-form, can be treated as the
VB, n-gauge-natural bilinear operator in the sense of Definition 2.1. Then Cj is
described in Theorem 2.4. So, replacing C' by C' — Cj, we can assume

Co=0. (3.3)

We will keep this assumption in the rest of this section. The proof of our Theorem 3.5
will be continued after proving several lemmas.
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By the VB,, ,-invariance of C, such C' is determined by the values
Cp(X'ouw, X?*aw?), e TLR™" o T;R™" (3.4)

for all H € Tk, (A T*R™") and all X! @ w', X2 @ w? € T, (TR™" & T*R™")
and all e € R™ = {0} x R" = Rj"".

Given e € R™ = {0} x R” = Ry"", let T.(R™ x R") = R™ x R" and
TH(R™x R") = Rm* x R™* be the usual identifications. Let

CHl (Xt @ w!, X2 @ w?), = the R™-part of Cx (X' @ w!, X? @ w?).,

O (X' @ w!, X? @ w?), = the R™part of Cy (X' @ w!, X? @ w?),, (3.5)
CEN XY @ wh, X? @ w?), = the R™ -part of Cy (X! @ w!, X2 @ w?)., .
02’2()( o w', X? @ w?), = the R"*-part of Oy (X' @ w!', X? @ w?)..

We will keep this notion (3.5) in the rest of this section.
Lemma 3.6. C is of order 1 and Cy (X! @ w!, X2 ® w?) is linear in H. Moreover,
Ch(X!t @ wh, X2 @ w?) is independent of both w! and w?.

Proof. By the invariance of C with respect to hy = (fx',...,12™,y',...,y"),
we have the homogeneity conditions

e oy (X o wl, X2 ¢ w?), 36)

= OOl (t(he) X @ t(he) w8 (he) o X2 @ t(hy)sw?)e .
for p,v = 1,2, where k(1,1) = 1, k(1,2) = 2, k(2,1) = 3, k(2,2) = 2. By Corol-
lary 19.9 of the non-linear Petree theorem in [7], we may assume H, X', X2 w! w?
are polynomial of degree not more than r, where r is an arbitrary finite number.
We can write

(h)oH = as(H)2 + ...+ arg (),
t(he)« X = bo(X1) + ...+b,.+3 X3,
t(he)sw® = cr (Wt + ..+ crpa(whH)t™ 3, (3.7)
t(he) X2 = bo(X?) + ...+ bpy3 (Xt T3,
t(he)ew? = c1 (W)t + ...+ crpa(W)E T3,

(The first above expression is because of H is a linear 3-form.) Then the homoge-
neous function theorem and the homogeneity condition (3.6) and the assumption
Cy = 0 complete the first sentence of the lemma. Moreover, they imply that
Cl (X' w', X2 0 w?), and CH*(X' @ w!, X2 @ w?), and CF* (X dw', X2 @ w?),
are independent of w! and w? for any e in question.

It remains to prove that C’f,il(X1 @ w', X? @ w?), is independent of
both w! and w?, too. For, it is sufficient to show that Cijl(O ®wl,0®w?). =0 and
CHNXT®0,0®w?), =0, and C5' (0@ w', X2 3 0), = 0.
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For any 7 € R, we can write
m
CH 08w X2 0)c =Y aird.ca,
i=1

where a; are the real numbers (depending on w! and X? and e and independent of 7).
Using the invariance of C' with respect to (x!,... 2™, %yl, ceey %y") (preserving X?
(as X2 is linear) and sending H into tH (as H is linear) and w' into tw! (as w! is
linear) and Te into }7e) and that Cp(—, —) is linear in H, we get

m 1 m
t2 g ai;Td%Texl = g aitdi " .
i=1 i=1

Then ta; = a;, and then a; = 0 for 7 = 1,...,m. Then C’?{’l(O dw, X?230), =0,
as well. The proofs of the two other equalities are quite similar.
The lemma is complete. O

Lemma 3.7. The vector field part of Cy (X' @ w!, X2 @ w?) is zero.

Proof. Let H € Tk . (A* T*R™") and X! @w!, X2@w? € Tk, . (TR™" & T*R™")
and e € R" = {0} x R®" = R{"". By the homogeneity condition from the
proof of Lemma 3.6 and the homogeneous function theorem, we derive that
C;{’l(X1 ® w!, X? ® w?), is independent of H, and then it is zero because of the
assumption Cy = 0. Further, for any 7 € R, we can write

n
0
CH(X'®0,X>®0),e =Y dir—r
o
where a* are real numbers (depending on X~1 and X? and e and independent of 7). Then,
using the invariance of C' with respect to hy = (z!,... 2™, %yl, R %y”) (preserving

X' and X2 as they are linear, sending H into tH as it is linear, and sending %‘
TE

into %%‘ ., and sending Te into %Te), since C is linear in H, we get
t lre t

Then a* =0 for k = 1,...,n. Then, applying Lemma 3.6, we get
CHRX'ow, X?aw?), =C* (X' @0, X2 ®0). =0.

The lemma is complete. O
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Lemma 3.8. Under the assumption m > 3, C is determined by the collection

0 0
2,1
Cyldxl/\daf:z/\dx?’ ( 00, 57— & O) 61,

ozt oxh
C2aatnans (7 @0, y’“% ®0) .
037;11/\(111/\(112 (yk% ®0, % D 0) o)’ s)
Ol ot naa2 (aii ©0,2° afﬁ ® 0)61, |
Cdzg;ll/\dxl/\dx2 (xg ajil &0, aai > 0) o
O?hflAda:l Adz? (% ©0, % & 0) o

foralliyiy =1,...,m and k,ky = 1,...,n, where e; = (1,0,...,0) € R" = Ry"".
Proof. By Lemmas 3.6 and 3.7 (and their proofs), C' is determined by the collection

Copy)df (@) ndf? @)ndss (z) (X @0, X% ®0)e,
Cra(@)dpm)nds @)ndr2() (X @0, X% @ 0)e, (3.9)
Cd@(y)/\dgl(x)Adgz(z) (X1 ® 0, X’® 0)e

for all X1, X2 € Tk,...(TR™") and all e € R™ = {0} x R"” C R™" and all maps
L g ¢ R 5 R

with

FH0) = £2(0) = £3(0) = ¢'(0) = g°(0) = 0
and all linear maps ¢ : R™ — R. Of course, we can assume ¢(e) = 1 and the rank
of (dof!,dof?, dof?) is maximal and the rank of (dog*, dog?) is maximal. Then, using
the VB,, n-invariance of C, we can assume e = ey, ¢ = y*, fl =zl f2 =22 f3 =23
(we use m > 3) and ¢! = ' and ¢> = 2% Further, using the
invariance of C with respect to (a!,...,2™ y' + 23yYyt, ..., y")" L we
can see that the values Cyyindgztnda? (X'®0,X%2®0),, determine the values
Cd(y1+a:3y1)/\d:v1/\d12 (Xl @0, X? EBO)el . Then the values Cdyl/\dzl/\de (Xl @0, X’® 0)51
together with the values Cy1gp1 ndz2ndes (X' ® 0,X% @ 0),, determine the values
Cx3dy1/\dr1/\dm2 (Xl @ 0, X’ 0)31. So, the values Cx3dy1/\dm1/\d12 (Xl @ 0, X’ 0)61
may be omitted. So, C' is determined by the collection of values

Ojildml/\d$2/\d:1:3 (Xl 0, X2 & 0)617

32 (X'®0,X%00),,,

yldzl Adz2 Adx3

c2! (X'®0,X%20),,,

dy* Adz! Adx?

c22 (X'90,X?30).,

dy* Adx! Adx?

(3.10)
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for all «, 3, 7,5 e (NU{o}h)™ and 4,4y = 1,...,m and j, k,j1,k1 = 1,...,n, where
(Xt =22 8:ci or X! = mﬁyja r) and (X2 = 27 5% or X? = 2%yn aj’n ), where (of
course) z¢ := (z1)®1 ... (2™)*m. We are going to study this collection (3.10).

(i) We start with C' 1dll/\(ug/\dwg(Xl@O,X2EBO)61. If X1 =z a cand X% =279

ozl
1.1 1,
(3!, ... 3™yt oy, we get

then by invariance of C' with respect to hy =

IO s (X80, X2 @ 0)e, = 1C%] 1 g gee (X 80, X2 8 0),

and then

Ok (X'®0,X250), =0

ldxl Adx2 Adx3
if |a] 4 |y| # 0. Quite similarly,
2,1 1 2
Cyldxl/\d:ﬁ/\dw3 (X ©0, X" 0)51 =0
in the rest three sub-cases.

(ii) Now we pass to 0212dmlAdx2/\d;p3 (X'®0,X? @ 0),. If X' = 2252 and
X2 = = 27 557 then by invariance of C' with respect to h; (as above), we get

t3+'a‘+'7' QCQIZzlAdmzAdms (X'®0,X%®0)e, = Co%i ndurnaes (X @0, X7 B 0),,,
and then we have
022

yldz! Adz2 Adx3

(X'®0,X*®0),, =0.

Quite similarly, we get

CyQiQdmlAdﬁ/\dz?» (Xl ©0, X% @ 0)e, =0
in the rest three sub-cases.
(iii) Now, we study Cdyll\dml/\dzz (X120, X290),,. If X1 = 22 6?577 =z 831

then by the invariance of C' with respect to h:, we get

t2+|a|+h‘ 203 11/\dm1/\d12 (Xl D 0 X2 o 0) Csyll/\dxl/\dIZ (Xl ® 0,X2 ® O)ela

and then

CsélllAdzl/\dm2 (Xl ©0, X? & 0)61 =0
if [o + || # 1. Similarly, if X' = 2*22; and X2 =2 yj1 - then

Coi ndo az2 (X @0, X% ®0), =0
if |a| + |8] # 0. Similarly, if X* = xﬁyj% and X? = 27 8;c71 , then

2,1
Cayt ndat nda? (X'®0,X*®0), =0

if | 8] + |v| # 0. Similarly,
c2h (X'®0,X200),, =0

dy* Adxzl Adx?
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in the rest sub-case. Further, we can see that the values C’i’/ll Ada Adﬁ(% & 0,

89?’?1 yl/\df/\dg(X1 & OahXQ @ 0)61
for all “constant” vector fields X! and X2 on R™ (treated as linear vector fields
on R™™) and all linear maps f, g,h : R™ — R. Then (of course) we can assume that
f, g, h are linearly independent (we use m > 3). Then, using the invariance of C
with respect to (p(xt,...,2™),y!,...,y") for a linear isomorphism ¢ : R™ — R™,
we can assume f = :cl, g=x%and h = x3 Because of the bi-linearity of Cg, we can

else assume that X 1= 21- and X2 = azll . Quite similarly, one can proceed with
2,1 i 1%}
Car 1/\d7"1/\d9c2( ' ag;n @0, 52 927 D 0)61 instead of Cdyl/\dTl/\drz((’)x? ©0, 3312 o ®0)e,

lAde(Xl D 07X2 )61' If Xl = J;aazi and

2

® 0)e, are determined by the values Cj

(iv) Finally, we study Cdyl Adz

X? = x”aw—il then by the invariance of C' with respect to h; we get

2l - 20d et g2 (X1 @0, X2@0),, =CT3 X'®0,X290).,,

ylAdx! Adx? (

and then
Cﬁlﬁ/\dzl/\dmz (Xl ©0, X2 ® 0)61 =0
if |a| + |7 # 0. Quite similarly, Cd L ndoings2 (X1 ®0,X2®0)e, =0 in the rest three
sub-cases.
The lemma is complete. O

Lemma 3.9. All values ngﬁ/\dxl/\dm?(a?w @ 0, azn ®0)e, are zero except (eventually)

of C 1/\dw1/\dm (3‘21 D0, 52 7.7 ®0)e, and C y! Adz! Adz? (812 @0, 52 521 ® 0)e, . Moreover,
we hcwe

0 0
Cj?ﬁAdml/\dz"’ (7 D0, & 0) - dd€1y17

Ox! " 922
vs P P X (3.11)
C yiAdz! Adx? (8 2 0, Oxl @0> = —ade,y,
where @ is the real number (determined by the operator C).
Proof. We can write
0 0 =
2,2
Cotnaninass (55 0 g ©9),, = L awndet/
where amk € R. Then by invariance of C with respect to (Zrz!,..., 2™ y', ..., y")

21 1 _
we get 7T 7 T Qiigk = Qiiyk- Then a;;, &

1 ™

0 if {z i1} ;é {1 2} Further, by the

invariance of C' with respect to (z',. T ty sy ty ™) we get ajor = tajog
for k = 2,...,n. Then a9 = 0 for k =2,...,n. (f n = 1, this is trivial.) Fur-
ther by the invariance of C' with respect to (x2 :El Soa™ oyt o y") (replacing

! by 22 and vice-versa) we get ajoxr = —a21x for k = 1,...,n. Summing up,
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all values C’dylmm,l/\umz(é,‘zz @ 0, a:?n @ 0)e, are zero except (eventually) of

2,2 2,2
Cdyl/\drll\dmz(awl ® 0’ o2 ® 0)51 Cdyl/\dml/\dxz(ﬁw2 ® 0’ ozl ® 0)51 Moreover,

0 0 0 0
Osg;%Adzl/\d:rQ (%@0 or ) EBO) = _Cg';/zl/\dzl/\da:2 (@690 or a1 690) - a121d61y1'
The lemma is complete. O

Lemma 3.10. Let m > 3. All wvalues Cg?ildzl/\dzz/\dx?’(% ® 0,(%% @ 0)g,

are equal to zero except (eventually) of C;ildzl/\dmzwﬁ(a%l ® 0,52 @ 0)., and

2,1 ) ) 2,1 B )
C ld;clAda:Z/\dx3(ax2 ® Oaﬁ ® 0)e, and C 1d9c1/\dx2/\dac3( 5.7 D0, 821 ® 0)e, and

2 2,
c 1d11/\dmg/\dw3(82 EBO’ 8m3 @0) and C 1da:1/\dz2/\dx3(322 @ 07 Erel S 0) and

Oledwl/\da:2/\dw3(di ® 0, 22 32 ©0)e, - Moreover we have
a T 3
C 1d:v1/\d12/\dx‘3 (81‘ @ 0) o = bderr ;
0 -
2,1
C yldz! Adz? Ada3 (@ EB 0) o bdell‘
0 -
C 1da71/\d:62/\dm3 (73 a1 D 0) = bdel 1‘2,
a; ax “ (3.12)
C 1d:1:1/\d12/\d$3 (% @ 0) o = bdell' y
c2 0 0) =bd,,a"
yldz Adz2 Adz3 (@ @ >€1 = 0C¢, T,
0 8 -
2,1 1
C,i yldxl Adz2 Adx3 (a 3 &0, @ D 0)61 = _bderr )

where b is the real number (determined by the operator C).

Proof. We can write

0
Cvjitiajl/\dacz/\dw3 (@ & 0 8 i1 ) Z b“l]delx

where b;;,; € R. Then by the invariance of C with rebpect to base homotheties

=T, ..., =T we get 7ir2r3 L Lp. o = 7ip, .. en b;;,; = 01
(7—1 17 77—1 m’yl’ ’yn)’ g t 12 37} 7—11b 1] ]b 1J Th b 1] 0 f
1,11, ] ,2,3}. Further, applying the invariance o with respect to the permu-
0,11, 1,2,3}. Furth lying th f C with t to th
tations of z', 22, 23 we easily see that biog = —ba13 = b312 = —b132 = —bs3a1 = bas1.
The lemma is complete. O

Lemma 3.11. All values ng;ll/\dml/\dz?(% ®0 ykayik1 ®0)., are equal to zero except

(J‘tj[ventually) Of}?dylAdzlAd12<8w @0,y 57 9°®0),, and Odyl/\dazl/\d:vz([‘)m @0, y' 57 9 00),, -
oreover, we have

0 0
2,1 R
Cdyl/\dxl/\dz2 (8 7D 0 y ﬁ &b 0) = Cdelx2 ( |
3.13
0 o .
ng;ll/\ulncl/\dac2 (3 ;@0 Yt oy S 0) = —éde, 2",

where ¢ is the real number (determined by the operator C').
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Proof. We can write
0 0 i )
2,1 k _
Cay nda ndr? (% ©0,y ey ® 0)61 = ZCikkljdell‘Jv

where c;p,; are the real numbers Then by the invariance of C with respect to the

base homotheties (Zra!,. Moyt ™) we get T 72 L cing, j = TV ik, j. Then
Cikkij = O if {i,j} 7é {1, 2} Further by the invariance of C with respect to replacing

z! by 22 (and vice-versa) we get Cipk,2 = —Cagk,1. Further, by invariance of C' with
respect to (z!,..., 7Tlly , Tlgy - 1ny ) with 71 = 1, we get T’“T%lclkklg = C1kk,2-
Then cipr,2 = 0 1f k ;é k1. Further if & € {2,. n} there exists a VB m-map
Y= (xR a2, y™)) bendmg621nt0 —|—y8 . Then,

using the invariance of C With respect to v, from

) P )
Cvdyl/\dml/\d:r2 (@ @0, @ S 0) =0 adel ylv

ey
where @ is from Lemma 3.9, we get

Cdyl/\dzl/\d12<8al ®0, (882 +y a(f?k) @0)81 =0® ade,y".

2,1 0 )
(That C (551 @0, 522

dyl Adat Adz? ® 0)., = 0, see the proof of Lemma 3.8.) Then

0 0
Cdyl/\dwl/\de( 1 @0 y Tk D 0) =040
oz o ©0).,

for k = 2,...,n. The lemma is complete. O

Lemma 3.12. All values Cj{,ll/\dwmdx

tua”y) Of C’dq,/l/\da:l/\d:v (y 3y1 @0’ ozl 690)"1 and Cdyl/\dml/\da: (y ayl @O’ ox2 @0)91
Moreover, we have

(ykaikl ®0,2 37 ©0)e, are zero except (even-

9] 0
2,1 1 s 2
Cly ndat Ada? (y g’ ®0, 9t @ 0) o éde, o1
3.14

0 0
2,1 1 . 1
Cay nda ndar? (y Byt ©0, el S 0) o —€de, T,

where € is the real number (determined by C').

Proof. The proof is quite the same as the one of Lemma 3.11. In fact, this lemma is
Lemma 3.11 for C°P instead of C, where

CP(X'dw', X2®w?) = Cy(X?®w?, X ¢wh). O
H
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Lemma 3.13. Let m > 3. All values Cjélmdxl/\dz?(aii @ 0,133631.1 @ 0)., are

equal to zero except (eventually) of C’s?’ﬁmml/\dzg(% &) 0,333% ® 0)e, and

2,1 9 3.9 2,1 G 3.8
Covindgring2(gez © 0,2°50 @ 0)ey and Cplyyyipg (5 © 0,275 @ 0),

and ng}llAdxlAdﬂ(af% ®0,2° 52 @ 0).,. Moreover, we have
0 0 -
2,1 3 B 5
Cdyl/\dxl/\dxz (@ @O’x @ @0)61 - fdelx 9
0 0 -
ot nawinaee (53 © 0,022 ©0) = —fd, a?,
y oz ox e (3.15)
0 9 .
2,1 3 o L
Culyl/\dacl/\dgg2 (? ©0,z ox2 D 0) o gde, ",
0 0
2,1 3 o )
C’dyl/\dazl/\dz2 (@ ®0,z @ S O) . = *gdelw s

where f and § are the real numbers (determined by the operator C).

Proof. We can write

0 . 0 m .

2,1 3 .

Cat Adat nda? (@ 90,2755 & 0>e1 = Giijde, 27,
j=1

where ¢;;,; € R are the numbers. Then by the invariance of C' with respect to
(Lo, Zmamyt o y) we get T2 L g = TIqu, . Then g;,; = 0 if

{i,11,7} # {1,2,3}. Further, there exists a O-preserving embedding ¢ : R — R
sending (the germ at 0 of) 8% into % —|—sca%. Then, by the invariance of C' with respect

to (b, 22, 0(2?),..., 2™,y ... y"), from
0 0
2,1 _
C’dyl/\dzl/\dm2 (8$1 D O’ axg S O) e =0
we get

Osz,/llAdxl/\dx2 (% @0, (% + l‘g%) ® 0)@1 =0,

and then

0 0
2,1 —
C’dylAdwlAdIQ( - ® 0,z 3 @0)61 0,

i.e. g132 = 0. Then using the invariance of C' with respect to changing ! by 22 (and
xiice—versa) we get that gos1 = —qi32 = 0 and ¢321 = —¢312 and g123 = —g213. We put
f :=qi23 and § := g321. The lemma is complete. O]
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Lemma 3.14. Let m > 3. All values Cdyl/\dxl/\dz?(x 8111 @ 0, 2 507 © 0)e, are
equal to zero except (eventually) of del/\dzl/\dmg(a: W &) 0,8%1 ® 0)e, and
ijllmq«l/\dﬂ(msagl ® 0, 322 ® 0)e, and CdyllAdrlAdﬂ(m?)a%z ©0, 555 ®0)e, and
02 Undt Ada? (23 Ml @0, 2 523 © 0)e, . Moreover, we have
0 0 -
2, 3 _ 3
C 1/\dx1/\dac2( Or2 0, Ozl @0) = hde,a”,

€1

0 0
2,1
Cdyll\dml/\dz2( Izl ®0, 92 S2) 0)61 = —hd,, >,

(3.16)
0 0 ~
2.1 _
(%wmﬂmﬁ(ﬁgpﬂm)a3®0kl_k%@a
0 0 ~
2,1
Clnarinar (2 57 @0, 575 ©0) = —hdey2

where h and k are the real numbers (determined by the operator C).

Proof. The proof is almost the same as the one of Lemma 3.13. In fact, this lemma is
Lemma 3.13 for C°P instead of C. O

Lemma 3.15. Let m > 3. We have
f=a+é (3.17)

where a is the real number from Lemma 3.9 and ¢ is the real number from Lemma
8.11 and f is the number from Lemma 3.13.

. oy 2
Proof. leen a positive number 7, ¥, := (2, sz, 3, 2™yt ... y") preserves

e1 and 8 -9 and sends dy' A dz! A dx? into dy' A da? /\d(x + T2 ) and ‘92 into
T +1m3 5,2+ Moreover, by the invariance of C' with respect to the base homotheties

(%xl,...,; ,yt, ..., y™), we can easily see that

0 0
2,1
C 1/\dz1/\dx2<%®0 oz 2@0)6120.

Then, by the invariance of C' with respect to ¥, we get

(8 1 0

o2 2 g0, — % o) —0.
81:1@ 1+7‘x38$2® er

dy' Ndz I Ad(z?2+T12223)

Then by the order argument, we get

o 0
2,1 =
c%yMﬂM@um%%th@au, )ag@okl_a

Then, comparing the coefficients on 7 of both sides of this equality, we easily get

0 0 0 0
2,1 3 21
Cdyl/\d:zrl/\dz2< - 0,z - @O>e1 = CdylAdgglAd(xeS)(@ &0, 922 EBO) . (3.18)
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Further, by the invariance of C' with respect to (x!,... 2™, ﬁyl, vy,
from 9 9
C’dyl/\dzl/\dx2 ( 1 S3) 0 v a2 ©® O) =0® &del y17
Or Ox ey
we get
0 0 ~ 1, - 3
Cd(y1+z3y1)/\da:1/\dx2 (@ D 0, @ D 0)61 =0 (adely + &dell‘ ),
and then 5 p
2,1 — 3
Cd(ac3y1)/\d;c1/\dx2 (@ (&) 0, @ D 0) o = adelx s (319)

where @ is the number from Lemma 3.9.

Further, by the invariance of C' with respect to (z?, %xz,x37 L TR VL B
we can easily see that
0 0
Cdyl/\dwl/\da::’(% ® 0, 922 ®0)e, =0®0.
Then, by the invariance of C' with respect to (x!,..., 2™, ﬁyl,y{ oY), we get

0 0 T . 0
Ca(yt +ra2y!) Ada! Ada® (@ &0, (@ - WU 87;g1> S 0) . =000,

and then (by the order argument and comparing the coefficients on 7) we get

0 0 0 1 0

2,1 _ 21

Cd(mzyl)/\dazl/\d:c3 (@ ©0, > O 9.2 ® O) Cdyl/\dwl/\dw3 (035 ©0, y a 9,1 ® 0)
Further, by the invariance of C' with respect to (z!, 22 + 23,23, ... 2™ y!, ... y"),
from the first equality of (3.13), we get

0 0
2,1 - 2 3
Cdyl/\d:rl/\(dw2 de)(a T ©O0, y' a0 EBO) . = é&d,, (v° — 1°),

and then 5 5
2,1 1 ~ 5
C 1/\dw1/\d13(6 1 @0,y 6 a1 @0) o = Cdelx ,

where ¢ is the number from Lemma 3.11. Then

0 0 .
Cﬁ(i& YAdzt Adz3 (8 1 0 W 5>} 0) o = cdelm?’. (320)

Now, from (3.15), (3.18), (3.19) and (3.20), since
d(z3y") Adat A da? + d(@?yt) Adat A da® = dyt A dat Ad(2?2?),

we get
0

0]
fdelx - CQ ylAdz! Adx? (8 1 0, £C3

ox 2

as well. The lemma is complete. O

® 0) = (a+ &)de, 2%,

€1
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Lemma 3.16. Let m > 3. We have

h=—a+eé, (3.21)
where a is the real number from Lemma 3.9 and € is the real number from
Lemma 3.12 and h is the number from Lemma 3.14.

Proof. In fact, this lemma is Lemma 3.15 for C°P instead of C'. So, the proof is almost
the same as the one of Lemma 3.15. O

Lemma 3.17. Let m > 3. We have
f+g+k+h=0, (3.22)

where f and § are the numbers from Lemma 3.13 and h and k are the numbers from
Lemma 3.14.

Proof. By the invariance of C' with respect to (x! +72%,22,... 2™, y!,... y"), from

the third equality of (3.15) we get

21 d d d L
Cdyl/\d(xl_Tx3)/\dx2(($ + 7 Oz 1) @O 33 ﬁ @O) —gdel(l' — T ),

and then considering the coefficients on 7 and using the first equation of (3.15)
we obtain

0 0 -
2,1 3_ = 3
C yl Adz3 Adx? (8333 0,z 8 2 ® 0)61 + fdelx - _gdelx :
Then using (in particular) the invariance of C' with replacing 2° by 2! (and vice-versa)
we get

0 3 -
2,1 — (5
Cdyl/\dml/\dIQ(a 1 @0 l‘ W @0) . = (g+f)d€1.%‘1. (323)
Quite similarly, using (3.16) instead of (3.15) we get
0 0 - -
2,
Cdyl/\dxl/\d$2( 1@ @0, s @ 0) . =(k+ h)delxl . (3.24)

(In fact, the equality (3.24) is the equality (3.23) for C°P instead of C.)
Next, by invariance of C Wlth respect to (!, 22 + 7(x1)2, 23, .. 2™yt yn),
from C;.;Jll/\dzl/\dIQ(% @0, 52 727 D 0)e, =0, we get

ng,/ll/\dxl/\d(m?—r(wl)Q)((881 + 27z %) @0, (361 + 271 %) ® 0)el =0,

and then considering the coefficients on 7 we get

0 0
2,1
Cdyl/\darl/\dac2(8 1 0, .’L‘ W EBO)E1
0 0
2,1
Cdyl/\dazl/\d:c?( or2 @0, s @O) =0.

€1

(3.25)

From (3.25), (3.24) and (3.23) we obtain (3.22), as well. The lemma is complete. [
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We continue the proof of Theorem 3.5. By Lemmas 3.6-3.17, any
VB, n-gauge-natural operator C' with Cy = 0 is uniquely determined by the cor-
responding 5-tuple (a, b, ¢, 7, l%) Further, one can easily directly compute the corre-
sponding 5-tuples of VB,, ,,-gauge natural operators 0 @ix1ix2H and 0@ irix1ix2dH
and 0 @ ipixedix1H and 0 ® ipixidix2H and 0 @ ipdix2ix1 H. They are equal
to (-1,-1,1,0,0) and (0,—1,0,0,0) and (0,—1,0,0,1) and (0,1,—1,1,0) and
(0,1,—1,0,0), respectively. The determinant of the matrix of the above vectors is 1.
So, the dimension argument complete Theorem 3.5. O

4. THE GENERALIZED TWISTED DORFMAN-COURANT BRACKETS
WITH THE JACOBI IDENTITY IN LEIBNIZ FORM

Definition 4.1. Let C be a VB,, ,-gauge-natural operator in the sense of Definition 3.1.
We say that C' is a generalized twisted Dorfman—Courant bracket if Cy is the (usual)
Dorfman—Courant bracket.

Corollary 4.2. Let m > 3 and n > 1. Any generalized twisted Dorfman—Courant
bracket C is of the form

Cp(X'owh X?ow?) = [X1, X% & {Lx1w? —ixedw!
+ Cl’ixl’ix2H + CQiLixlix2dH + CgiLix2dile (41)

+ cqipixidixzH + cyipdixzixi H}

for any H € TL(A*T*E) and any X' @ w', X? ® w? € T'y(TE ® T*E) and any
VB, n-object E, where c1,¢2,¢3, ¢4, ¢5 are (uniquely determined by C') real numbers.

Proof. 1t is a immediate consequence of Theorem 3.5. O

Definition 4.3. We say that a generalized twisted Dorfman—Courant bracket C'
satisfies the Jacobi identity in Leibniz form for closed linear 3-forms if

Cu(p",Cu(p®,p*)) = Cu(Cu(p', p*), p°) + Cu(p*,Cu(p', p*)) (4.2)

for all closed linear 3-forms H € T, (A® T*E) and all linear sections p' = X' @ w' €
I (TE ® T*E) for i = 1,2,3 and all VB,, ,-objects E.

Remark 4.4. It is well-known that the twisted Dorfman-Courant bracket
(i.e. the generalized one satisfying (4.1) with (¢1, ¢o, ¢3,c4,¢5) = (1,0,0,0,0)) satisfies
the Jacobi identity in Leibniz form for closed linear 3-forms.



On the gauge-natural operators similar to the twisted Dorfman—Courant bracket 223

Lemma 4.5. Let C be a generalized twisted Dorfman—Courant bracket of the form
(4.1). If C satisfies the Jacobi identity in Leibniz form for closed linear 3-forms, then
caLxrixeixsH + c3Lxripixsdix2H
4+ cqLxripixadixsH + csLxripdixsix2H
+crixvipxz, x3) H + c3ipipxz xsdixi H
+ cqipixt di[X27X3]H + C5iLdi[X27X3]iX1H
= —crixsdixiix2H — cgixsdipixedix1 H
—cyixsdipix1dix2H — egixsdipdix2ixi H (4.3)
+ cripxr xe)ixs H + caipixsdipx x2)H
+ cqipipx x2)dixs H + csipdixsdipx: x2)H
4+ c1Lx2ix1ixsH + csLx2ipixsdix1 H
+calxeinixidixsH + csLxeipdixsixi H
+ crixzipx1 x3) H + caipipxr xsjdixz H
+ C4iLiX2di[X17X3]H + C5iLdi[X17X3]’L'X2H
for any linear vector fields X', X%, X3 and any closed linear 3-form H on E.
Proof. For any linear vector fields X!, X2, X3 on F and any closed linear 3-form H
on F, we can write
Ca(X'®0,0r(X*®0,X*®0)) = [X',[X*, X @ Q,
Cu(Cy(X'®0,X?®0),X*®0) = [[X!, X%, X% @0,
Cu(X?20,0y(X'®0,X*90)) = [X%[XL, X oT,
where
QO =c1Lxrix2ixsH + csLxripixsdix2H
4+ calxripixedixsH + csLxripdixsix2 H
+eiixixe x3) H + CgiLi[X2)X3]diX1H
+cqipixrdipxz xsH + esipdijx2 xs)ixi H,
O = —crixsdixiix2H — cgixsdipixedix1 H
—caixsdipix1dix2H — cgixsdipdix2ix1 H
+ cripxr xe)ixs H + caipixsdipx x2)H
+cqipipx xeydixs H + csipdixsdipx: x2)H,
T =c1Llx2ixrixsH + c3Lx2ipixsdixr H
4+ cealxzipixidixsH + cs Lx2ipdixsixi H
+ Clixzi[X17X3]H + CgiLi[X17X3]diX2H
+ caipixedipx xsH + csipdipx1 xsyix2 H.

If C satisfies the Jacobi identity in Leibniz form of C for closed linear 3-forms,
then Q = © + T, i.e. (4.3). The lemma is complete. O
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Lemma 4.6. Let C' be a generalized twisted Dorfman—Courant bracket of
the form (4.1). If C satisfies the Jacobi identity in Leibniz form for closed linear
3-forms, then

03£X1iLiX3diX2H

+caLxripixadixsH + csLxripdixsix2H

+catpipxe, xsdixt H

+cqipixidipxe x3)H + csipdipxz xsjix1 H

= —cgixsdipixzdix1 H+
—cyixsdipix1dix2H — cgixsdipdix2ixi H
+ caipixsdipx x21 H
+ cqipipx x2)dixs H + csipdixsdipxr x2)H
4+ c3Lxz2ipixsdix1 H
4+ sl x2ipixidixsH 4+ csLx2ipdixsixi H
+ CgiLi[Xl)Xz]diX2H
+ C4iLiX2di[X17X3]H + C5iLdi[X17X3]iX2H

for any linear vector fields X', X2, X3 and any closed linear 3-form H on R™".

Proof. Tt is well-known that the (usual) twisted Dorfman—Courant bracket satisfies
the Jacobi identity in Leibniz form for closed linear 3-forms. So, we have (4.3) in the
case c3 = ¢4 = ¢5 = 0. So, formula (4.3) is equivalent to (4.4) for all linear vector fields
X' X% X3, X% and all closed linear 3-forms H on E. O

Lemma 4.7. Let C be a generalized twisted Dorfman—Courant bracket of
the form (4.1). Assume m > 4 and n > 1. If C satisfies the Jacobi identity in
Leibniz form for closed linear 3-forms, then cg3 = ¢4 = ¢5 = 0.

Proof. Putting linear vector fields X' = ;2; and X? = ;2; and X3 = L and closed
linear 3-form H = x'dx! A dz? A dy! into (4.4), we get
c3-0+cq- (yda') +cs5- (yrde') +e3-04c4-0+c5-0
=—c3-yldat —cy - 0—c5- (—y'dz') +¢c3-0+c4-04¢5-0
4+¢c3:04+¢c4-0+c5-0+c3-04+c4-0+4+c¢5-0.
Hence ¢3 = —c4.
Similarly, putting linear vector fields X' = x2% and X2 = % and X3 =L and
closed linear 3-form H = da!' A dz? A dy' into (4.4), we get
c3-04cq-ylde® +cs-ylda® +c5-04+¢4-04¢5-0
=—c3-0—c4-0—c5-(—y'dz®)+c3-0+cy-yrdr® 4+ ¢5-0
—|—C3-0—|—C4-(—yldx2)+c5~(—y1dx2)+03 “04+c4-0+4c5-0.

Hence ¢4 = —cs.



On the gauge-natural operators similar to the twisted Dorfman—Courant bracket 225

Similarly, putting linear vector fields X' = -2+ and X? = 2?2 and X® = ;2
and closed linear 3-form H = d(z%z*) A dz3 A dy! into (4.4), we get
cs-ytdat +eq-0+cs5- (—yldet)+ce3-04c4-0+¢5-0
=—c3-0—cy- (yrda* +2%dy') —c5 - 04+ c3-y'da* +c4-0+¢5-0
+Cg'0+C4'0+C5'0+03'0+C4'0+C5'0.
Hence ¢4 = 0.
Consequently, c3 = ¢4 = ¢5 = 0, as well. O

Thus we have the following result.

Theorem 4.8. Let m > 4 and n > 1. Any generalized twisted Dorfman—Courant
bracket C satisfying the Jacobi identity in Leibniz form for closed linear 3-forms
is of the form

Cp(X'ouw, X?2aw?) = (X, XY o {Lx1w? —ixadw! (45)
+CliX1iX2H+CQiLiX1iX2dH} .
Jor any H € TL(A*T*E) and any X' @ w', X? ® w? € Ty(TE ® T*E) and any
VB, n-object E, where c1,co are (uniquely determined by C) real numbers.
Moreover, given c1,co € R, the generalized twisted Dorfman—Courant bracket C of
the form (4.5) satisfies the Jacobi identity in Leibniz form for closed linear 3-forms.

Proof. The last sentence is an easy consequence of the fact that the usual twisted
Dorfman—Courant bracket satisfies the Jacobi identity in Leibniz form for closed linear
3-forms. ]

From Theorem 4.8, we have the following interesting natural characterization of
the (usual) twisted Dorfman—Courant bracket.

Corollary 4.9. Let m > 4 and n > 1. Any generalized twisted Dorfman—Courant
bracket Cy satisfying the Jacobi identity in Leibniz form for closed linear 3-forms
satisfies

Cu(X'ouw, X?auw?) =[[X!ow, X?2®w?en (4.6)

for any closed linear 3-form H € TY(A*T*E) and any X' ® w', X% @ ? €
I (TE ® T*E), where [[—, —]]u is the usual twisted (H-twisted) Dorfman—Courant
bracket and c is an arbitrary (uniquely determined by C) real number.

Remark 4.10. Roughly speaking, the above corollary means that (for m > 4)

the (usual) twisted Dorfman—Courant bracket [[—, —]]z (for closed linear 3-forms H)
is the unique (up to multiplication of H by a real number ¢) VB,, ,-gauge-natural
extension of the (usual) Dorfman—Courant bracket [[—, —]]o (by means of closed linear

3-forms H) satisfying the Jacobi identity in Leibniz form.
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