期刊论文详细信息
Heliyon
An assessment of the evaporation and condensation phenomena of lithium during the operation of a Li(d,xn) fusion relevant neutron source
K. Kondo1  T. Kanemura1  J. Knaster2 
[1] Fusion Energy Research and Development Directorate, QST, Rokkasho Fusion Institute, Japan;IFMIF/EVEDA Project Team, F4E, Rokkasho Fusion Institute, Japan;
关键词: Energy;    Materials science;    Nuclear physics;    Physics methods;    Plasma physics;   
DOI  :  10.1016/j.heliyon.2016.e00199
来源: DOAJ
【 摘 要 】

The flowing lithium target of a Li(d,xn) fusion relevant neutron source must evacuate the deuteron beam power and generate in a stable manner a flux of neutrons with a broad peak at 14 MeV capable to cause similar phenomena as would undergo the structural materials of plasma facing components of a DEMO like reactors. Whereas the physics of the beam-target interaction are understood and the stability of the lithium screen flowing at the nominal conditions of IFMIF (25 mm thick screen with +/–1 mm surface amplitudes flowing at 15 m/s and 523 K) has been demonstrated, a conclusive assessment of the evaporation and condensation of lithium during operation was missing. First attempts to determine evaporation rates started by Hertz in 1882 and have since been subject of continuous efforts driven by its practical importance; however intense surface evaporation is essentially a non-equilibrium process with its inherent theoretical difficulties. Hertz-Knudsen-Langmuir (HKL) equation with Schrage’s ‘accommodation factor’ η = 1.66 provide excellent agreement with experiments for weak evaporation under certain conditions, which are present during a Li(d,xn) facility operation. An assessment of the impact under the known operational conditions for IFMIF (574 K and 10−3Pa on the free surface), with the sticking probability of 1 inherent to a hot lithium gas contained in room temperature steel walls, is carried out. An explanation of the main physical concepts to adequately place needed assumptions is included.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:17次