Clostridium difficile Infection" /> 期刊论文

期刊论文详细信息
mSphere
Active and Secretory IgA-Coated Bacterial Fractions Elucidate Dysbiosis in Clostridium difficile Infection
Ciaran Kelly1  Xinhua Chen1  Andrés Moya2  Mária Džunková2  Giuseppe D’Auria2  Jorge F. Vázquez-Castellanos2  Alejandro Artacho2 
[1] Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA;Área de Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunidad Valenciana (FISABIO-Salud Pública), Valencia, Spain—Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, Valencia, Spain;
关键词: 16S rRNA gene sequencing;    Bayesian networks;    Clostridium difficile infection;    antibiotics;    dysbiosis;    fluorescence-activated cell sorting;   
DOI  :  10.1128/mSphere.00101-16
来源: DOAJ
【 摘 要 】

ABSTRACT The onset of Clostridium difficile infection (CDI) has been associated with treatment with wide-spectrum antibiotics. Antibiotic treatment alters the activity of gut commensals and may result in modified patterns of immune responses to pathogens. To study these mechanisms during CDI, we separated bacteria with high cellular RNA content (the active bacteria) and their inactive counterparts by fluorescence-activated cell sorting (FACS) of the fecal bacterial suspension. The gut dysbiosis due to the antibiotic treatment may result in modification of immune recognition of intestinal bacteria. The immune recognition patterns were assessed by FACS of bacterial fractions either coated or not with intestinal secretory immunoglobulin A (SIgA). We described the taxonomic distributions of these four bacterial fractions (active versus inactive and SIgA coated versus non-SIgA coated) by massive 16S rRNA gene amplicon sequencing and quantified the proportion of C. difficile toxin genes in the samples. The overall gut microbiome composition was more robustly influenced by antibiotics than by the C. difficile toxins. Bayesian networks revealed that the C. difficile cluster was preferentially SIgA coated during CDI. In contrast, in the CDI-negative group Fusobacterium was the characteristic genus of the SIgA-opsonized fraction. Lactobacillales and Clostridium cluster IV were mostly inactive in CDI-positive patients. In conclusion, although the proportion of C. difficile in the gut is very low, it is able to initiate infection during the gut dysbiosis caused by environmental stress (antibiotic treatment) as a consequence of decreased activity of the protective bacteria. IMPORTANCE C. difficile is a major enteric pathogen with worldwide distribution. Its expansion is associated with broad-spectrum antibiotics which disturb the normal gut microbiome. In this study, the DNA sequencing of highly active bacteria and bacteria opsonized by intestinal secretory immunoglobulin A (SIgA) separated from the whole bacterial community by FACS elucidated how the gut dysbiosis promotes C. difficile infection (CDI). Bacterial groups with inhibitory effects on C. difficile growth, such as Lactobacillales, were mostly inactive in the CDI patients. C. difficile was typical for the bacterial fraction opsonized by SIgA in patients with CDI, while Fusobacterium was characteristic for the SIgA-opsonized fraction of the controls. The study demonstrates that sequencing of specific bacterial fractions provides additional information about dysbiotic processes in the gut. The detected patterns have been confirmed with the whole patient cohort independently of the taxonomic differences detected in the nonfractionated microbiomes.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次