期刊论文详细信息
Journal of Modern Power Systems and Clean Energy
Multi-agents modelling of EV purchase willingness based on questionnaires
Juai Wu1  Qiuwei Wu1  Kang Li2  Dongliang Xie3  Yusheng Xue3  Fushuan Wen4  Guangya Yang5  Bin Cai6  Yu Zhang7 
[1] Nanjing University of Science and Technology (NJUST),Nanjing,China,210094;Queen&x0027;State Grid Electric Power Research Institute (SGEPRI),Nanjing,China,210003;State Grid Shanghai Municipal Electric Power Company,Shanghai,China,200122;Technical University of Denmark,Lyngby,Denmark,2800;Zhejiang University,Hangzhou,China,310027;s University,Belfast,Northern Ireland,UK;
关键词: Behavioral analysis;    Experimental economics;    Human experimenters;    Knowledge extraction;    Multi- agents;    EV purchase;   
DOI  :  10.1007/s40565-015-0112-4
来源: DOAJ
【 摘 要 】

Traditional experimental economics methods often consume enormous resources of qualified human participants, and the inconsistence of a participant's decisions among repeated trials prevents investigation from sensitivity analyses. The problem can be solved if computer agents are capable of generating similar behaviors as the given participants in experiments. An experimental economics based analysis method is presented to extract deep information from questionnaire data and emulate any number of participants. Taking the customers' willingness to purchase electric vehicles (EVs) as an example, multi-layer correlation information is extracted from a limited number of questionnaires. Multi-agents mimicking the inquired potential customers are modelled through matching the probabilistic distributions of their willingness embedded in the questionnaires. The authenticity of both the model and the algorithm is validated by comparing the agent-based Monte Carlo simulation results with the questionnaire-based deduction results. With the aid of agent models, the effects of minority agents with specific preferences on the results are also discussed.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次