Frontiers in Neurorobotics | |
Exploring the Embodiment of a Virtual Hand in a Spatially Augmented Respiratory Biofeedback Setting | |
Nikhil Deshpande1  Dario Mazzanti1  Massimiliano de Zambotti2  Emanuele Gruppioni3  Andrea Marinelli4  Carlo Albino Frigo6  Giulia Caserta6  Giacinto Barresi7  Matteo Laffranchi7  Marco Freddolini7  Lorenzo De Michieli7  Nicolò Boccardo7  Laura Angioletti8  Michela Balconi8  Jacopo Tessadori9  | |
[1] Advanced Robotics, Istituto Italiano di Tecnologia, Genoa, Italy;Center for Health Sciences, SRI International, Menlo Park, CA, United States;Centro Protesi INAIL, Istituto Nazionale per l'Assicurazione contro gli Infortuni sul Lavoro, Bologna, Italy;Department of Informatics, Bioengineering, Robotics, and Systems Engineering, Università degli Studi di Genova, Genoa, Italy;International Research Center for Cognitive Applied Neuroscience, Università Cattolica del Sacro Cuore, Milan, Italy;Movement Biomechanics and Motor Control Lab, Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy;Rehab Technologies, Istituto Italiano di Tecnologia, Genoa, Italy;Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy;Visual Geometry and Modelling, Istituto Italiano di Tecnologia, Genoa, Italy; | |
关键词: embodiment; augmented reality; prosthetics; biofeedback; training; breathing; | |
DOI : 10.3389/fnbot.2021.683653 | |
来源: DOAJ |
【 摘 要 】
Enhancing the embodiment of artificial limbs—the individuals' feeling that a virtual or robotic limb is integrated in their own body scheme—is an impactful strategy for improving prosthetic technology acceptance and human-machine interaction. Most studies so far focused on visuo-tactile strategies to empower the embodiment processes. However, novel approaches could emerge from self-regulation techniques able to change the psychophysiological conditions of an individual. Accordingly, this pilot study investigates the effects of a self-regulated breathing exercise on the processes of body ownership underlying the embodiment of a virtual right hand within a Spatially Augmented Respiratory Biofeedback (SARB) setting. This investigation also aims at evaluating the feasibility of the breathing exercise enabled by a low-cost SARB implementation designed for upcoming remote studies (a need emerged during the COVID-19 pandemic). Twenty-two subjects without impairments, and two transradial prosthesis users for a preparatory test, were asked (in each condition of a within-group design) to maintain a normal (about 14 breaths/min) or slow (about 6 breaths/min) respiratory rate to keep a static virtual right hand “visible” on a screen. Meanwhile, a computer-generated sphere moved from left to right toward the virtual hand during each trial (1 min) of 16. If the participant's breathing rate was within the target (slow or normal) range, a visuo-tactile event was triggered by the sphere passing under the virtual hand (the subjects observed it shaking while they perceived a vibratory feedback generated by a smartphone). Our results—mainly based on questionnaire scores and proprioceptive drift—highlight that the slow breathing condition induced higher embodiment than the normal one. This preliminary study reveals the feasibility and potential of a novel psychophysiological training strategy to enhance the embodiment of artificial limbs. Future studies are needed to further investigate mechanisms, efficacy and generalizability of the SARB techniques in training a bionic limb embodiment.
【 授权许可】
Unknown