Biosensors | |
Easy-to-Operate Co-Flow Step Emulsification Device for High-Throughput Three-Dimensional Cell Culture | |
Shanshan Li1  Chunyang Wei1  Tiejun Li1  Junwei Li2  Jiyu Meng3  Chengzhuang Yu3  | |
[1] Hebei Key Laboratory of Robotic Sensing and Human-Robot Interactions, School of Mechanical Engineering, Hebei University of Technology, Tianjin 300132, China;Institute of Biophysics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300401, China;State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China; | |
关键词: microfluidics; droplet arrays; 3D cell culture; co-flow step emulsification; lab on a chip; | |
DOI : 10.3390/bios12050350 | |
来源: DOAJ |
【 摘 要 】
Cell culture plays an essential role in tissue engineering and high-throughput drug screening. Compared with two-dimensional (2D) in vitro culture, three-dimensional (3D) in vitro culture can mimic cells in vivo more accurately, including complex cellular organizations, heterogeneity, and cell–extracellular matrix (ECM) interactions. This article presents a droplet-based microfluidic chip that integrates cell distribution, 3D in vitro cell culture, and in situ cell monitoring in a single device. Using the microfluidic “co-flow step emulsification” approach, we have successfully prepared close-packed droplet arrays with an ultra-high-volume fraction (72%) which can prevent cells from adhering to the chip surface so as to achieve a 3D cell culture and make scalable and high-throughput cell culture possible. The proposed device could produce droplets from 55.29 ± 1.52 to 95.64 ± 3.35 μm, enabling the diverse encapsulation of cells of different sizes and quantities. Furthermore, the cost for each microfluidic CFSE chip is approximately USD 3, making it a low-cost approach for 3D cell culture. The proposed device is successfully applied in the 3D culture of saccharomyces cerevisiae cells with an occurrence rate for proliferation of 80.34 ± 3.77%. With low-cost, easy-to-operate, high-throughput, and miniaturization characteristics, the proposed device meets the requirements for 3D in vitro cell culture and is expected to be applied in biological fields such as drug toxicology and pharmacokinetics.
【 授权许可】
Unknown