International Journal of Molecular Sciences | |
Scalable Microgravity Simulator Used for Long-Term Musculoskeletal Cells and Tissue Engineering | |
JeanetteA. Maier1  Monica Zocchi1  Sara Castiglioni1  Alessandra Cazzaniga1  Carsten Haack2  Adrian Koller2  Marcel Egli3  Christina Giger-Lange3  Simon Wuest3  Fabian Ille3  | |
[1] Department of Biomedical and Clinical Sciences L. Sacco, Università di Milano, 20157 Milan, Italy;Institute of Mechanical Engineering and Energy Technology, Lucerne University of Applied Sciences and Arts, 6002 Lucerne, Switzerland;Space Biology Group, Institute of Medical Engineering, Lucerne University of Applied Sciences and Arts, 6002 Lucerne, Switzerland; | |
关键词: simulated microgravity; bone marrow stem cells; myoblasts; | |
DOI : 10.3390/ijms21238908 | |
来源: DOAJ |
【 摘 要 】
We introduce a new benchtop microgravity simulator (MGS) that is scalable and easy to use. Its working principle is similar to that of random positioning machines (RPM), commonly used in research laboratories and regarded as one of the gold standards for simulating microgravity. The improvement of the MGS concerns mainly the algorithms controlling the movements of the samples and the design that, for the first time, guarantees equal treatment of all the culture flasks undergoing simulated microgravity. Qualification and validation tests of the new device were conducted with human bone marrow stem cells (bMSC) and mouse skeletal muscle myoblasts (C2C12). bMSC were cultured for 4 days on the MGS and the RPM in parallel. In the presence of osteogenic medium, an overexpression of osteogenic markers was detected in the samples from both devices. Similarly, C2C12 cells were maintained for 4 days on the MGS and the rotating wall vessel (RWV) device, another widely used microgravity simulator. Significant downregulation of myogenesis markers was observed in gravitationally unloaded cells. Therefore, similar results can be obtained regardless of the used simulated microgravity devices, namely MGS, RPM, or RWV. The newly developed MGS device thus offers easy and reliable long-term cell culture possibilities under simulated microgravity conditions. Currently, upgrades are in progress to allow real-time monitoring of the culture media and liquids exchange while running. This is of particular interest for long-term cultivation, needed for tissue engineering applications. Tissue grown under real or simulated microgravity has specific features, such as growth in three-dimensions (3D). Growth in weightlessness conditions fosters mechanical, structural, and chemical interactions between cells and the extracellular matrix in any direction.
【 授权许可】
Unknown