Sensors | |
Front-End Design for SiPM-Based Monolithic Neutron Double Scatter Imagers | |
Joshua W. Cates1  Victor Negut1  Klaus Ziock2  Paul Hausladen2  John Steele3  Erik Brubaker3  Jon Balajthy3  | |
[1] Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA;Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA;Sandia National Laboratories, Livermore, CA 94550, USA; | |
关键词: neutron imaging; neutron double scatter imaging; monolithic scintillation detector; silicon photomultipliers; | |
DOI : 10.3390/s22093553 | |
来源: DOAJ |
【 摘 要 】
Neutron double scatter imaging exploits the kinematics of neutron elastic scattering to enable emission imaging of neutron sources. Due to the relatively low coincidence detection efficiency of fast neutrons in organic scintillator arrays, imaging efficiency for double scatter cameras can also be low. One method to realize significant gains in neutron coincidence detection efficiency is to develop neutron double scatter detectors which employ monolithic blocks of organic scintillator, instrumented with photosensor arrays on multiple faces to enable 3D position and multi-interaction time pickoff. Silicon photomultipliers (SiPMs) have several advantageous characteristics for this approach, including high photon detection efficiency (PDE), good single photon time resolution (SPTR), high gain that translates to single photon counting capabilities, and ability to be tiled into large arrays with high packing fraction and photosensitive area fill factor. However, they also have a tradeoff in high uncorrelated and correlated noise rates (dark counts from thermionic emissions and optical photon crosstalk generated during avalanche) which may complicate event positioning algorithms. We have evaluated the noise characteristics and SPTR of Hamamatsu S13360-6075 SiPMs with low noise, fast electronic readout for integration into a monolithic neutron scatter camera prototype. The sensors and electronic readout were implemented in a small-scale prototype detector in order to estimate expected noise performance for a monolithic neutron scatter camera and perform proof-of-concept measurements for scintillation photon counting and three-dimensional event positioning.
【 授权许可】
Unknown