期刊论文详细信息
Journal of Inequalities and Applications
Dimension reduction for compressible Navier–Stokes equations with density-dependent viscosity
Mingyu Zhang1 
[1] School of Mathematics & Information Sciences, Weifang University;
关键词: Compressible Navier–Stokes equations;    Dimension reduction;    Relative entropy;   
DOI  :  10.1186/s13660-020-02405-w
来源: DOAJ
【 摘 要 】

Abstract In this paper, we investigate the Navier–Stokes equations describing the motion of a compressible viscous fluid confined to a thin domain Ω ε = I ε × ( 0 , 1 ) $\varOmega _{\varepsilon }=I_{\varepsilon }\times (0, 1)$ , I ε = ( 0 , ε ) ⊂ R $I_{ \varepsilon }=(0, \varepsilon )\subset \mathbb{R}$ . We show that the strong solutions in the 2D domain converge to the classical solutions of the limit 1D Navier–Stokes system as ε → 0 $\varepsilon \to 0$ .

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次