期刊论文详细信息
Journal of inequalities and applications | |
Dimension reduction for compressible Navier–Stokes equations with density-dependent viscosity | |
article | |
Mingyu Zhang1  | |
[1] School of Mathematics & Information Sciences, Weifang University | |
关键词: Compressible Navier–Stokes equations; Dimension reduction; Relative entropy; | |
DOI : 10.1186/s13660-020-02405-w | |
学科分类:电力 | |
来源: SpringerOpen | |
【 摘 要 】
In this paper, we investigate the Navier–Stokes equations describing the motion of a compressible viscous fluid confined to a thin domain $\varOmega _{\varepsilon }=I_{\varepsilon }\times (0, 1)$, $I_{ \varepsilon }=(0, \varepsilon )\subset \mathbb{R}$. We show that the strong solutions in the 2D domain converge to the classical solutions of the limit 1D Navier–Stokes system as $\varepsilon \to 0$.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202106300003387ZK.pdf | 1387KB | download |