期刊论文详细信息
Journal of inequalities and applications
Dimension reduction for compressible Navier–Stokes equations with density-dependent viscosity
article
Mingyu Zhang1 
[1] School of Mathematics & Information Sciences, Weifang University
关键词: Compressible Navier–Stokes equations;    Dimension reduction;    Relative entropy;   
DOI  :  10.1186/s13660-020-02405-w
学科分类:电力
来源: SpringerOpen
PDF
【 摘 要 】

In this paper, we investigate the Navier–Stokes equations describing the motion of a compressible viscous fluid confined to a thin domain $\varOmega _{\varepsilon }=I_{\varepsilon }\times (0, 1)$, $I_{ \varepsilon }=(0, \varepsilon )\subset \mathbb{R}$. We show that the strong solutions in the 2D domain converge to the classical solutions of the limit 1D Navier–Stokes system as $\varepsilon \to 0$.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202106300003387ZK.pdf 1387KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:1次