期刊论文详细信息
Journal of Inequalities and Applications | |
Dimension reduction for compressible Navier–Stokes equations with density-dependent viscosity | |
Mingyu Zhang1  | |
[1] School of Mathematics & Information Sciences, Weifang University; | |
关键词: Compressible Navier–Stokes equations; Dimension reduction; Relative entropy; | |
DOI : 10.1186/s13660-020-02405-w | |
来源: DOAJ |
【 摘 要 】
Abstract In this paper, we investigate the Navier–Stokes equations describing the motion of a compressible viscous fluid confined to a thin domain Ω ε = I ε × ( 0 , 1 ) $\varOmega _{\varepsilon }=I_{\varepsilon }\times (0, 1)$ , I ε = ( 0 , ε ) ⊂ R $I_{ \varepsilon }=(0, \varepsilon )\subset \mathbb{R}$ . We show that the strong solutions in the 2D domain converge to the classical solutions of the limit 1D Navier–Stokes system as ε → 0 $\varepsilon \to 0$ .
【 授权许可】
Unknown