期刊论文详细信息
Data
Longitudinal RNA Sequencing of Skin and DRG Neurons in Mice with Paclitaxel-Induced Peripheral Neuropathy
Anthony M. Cirrincione1  Sandra Rieger1  Benjamin J. Harrison2  Cassandra A. Reimonn2 
[1] Department of Biology, University of Miami, Coral Gables, FL 33146, USA;Department of Biomedical Sciences, University of New England, Biddeford, ME 04005, USA;
关键词: paclitaxel;    CIPN;    peripheral neuropathy;    RNAseq;    chemotherapy;    skin;   
DOI  :  10.3390/data7060072
来源: DOAJ
【 摘 要 】

Paclitaxel-induced peripheral neuropathy is a condition of nerve degeneration induced by chemotherapy, which afflicts up to 70% of treated patients. Therapeutic interventions are unavailable due to an incomplete understanding of the underlying mechanisms. We previously discovered that major physiological changes in the skin underlie paclitaxel-induced peripheral neuropathy in zebrafish and rodents. The precise molecular mechanisms are only incompletely understood. For instance, paclitaxel induces the upregulation of MMP-13, which, when inhibited, prevents axon degeneration. To better understand other gene regulatory changes induced by paclitaxel, we induced peripheral neuropathy in mice following intraperitoneal injection either with vehicle or paclitaxel every other day four times total. Skin and dorsal root ganglion neurons were collected based on distinct behavioural responses categorised as “pain onset” (d4), “maximal pain” (d7), “beginning of pain resolution” (d11), and “recovery phase” (d23) for comparative longitudinal RNA sequencing. The generated datasets validate previous discoveries and reveal additional gene expression changes that warrant further validation with the goal to aid in the development of drugs that prevent or reverse paclitaxel-induced peripheral neuropathy.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次