期刊论文详细信息
BMC Genomics
Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize
Yabin Wu1  Jianyu Wu1  Ruixia Wang1  Junqiang Ding1  Cong Mu1  Yanan Han1  Weibin Song1  Zijian Zhou1  Xiaopeng Li1  Chaopei Dong1  Yuna Chen1  Jingjing Li1  Huimin Li1  Xiaodong Sun1  Xiaodong Dai1  Wei Chen1  Jiafa Chen2  Xuecai Zhang3 
[1] College of Agronomy, Henan Agricultural University;College of Life Sciences, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University;Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT);
关键词: Maize;    Ear rot;    Disease resistance;    QTL;    GWAS;    Candidate gene;   
DOI  :  10.1186/s12864-020-6733-7
来源: DOAJ
【 摘 要 】

Abstract Background Fusarium ear rot (FER) caused by Fusarium verticillioides is a major disease of maize that reduces grain yield and quality globally. However, there have been few reports of major loci for FER were verified and cloned. Result To gain a comprehensive understanding of the genetic basis of natural variation in FER resistance, a recombinant inbred lines (RIL) population and one panel of inbred lines were used to map quantitative trait loci (QTL) for resistance. As a result, a total of 10 QTL were identified by linkage mapping under four environments, which were located on six chromosomes and explained 1.0–7.1% of the phenotypic variation. Epistatic mapping detected four pairs of QTL that showed significant epistasis effects, explaining 2.1–3.0% of the phenotypic variation. Additionally, 18 single nucleotide polymorphisms (SNPs) were identified across the whole genome by genome-wide association study (GWAS) under five environments. Compared linkage and association mapping revealed five common intervals located on chromosomes 3, 4, and 5 associated with FER resistance, four of which were verified in different near-isogenic lines (NILs) populations. GWAS identified three candidate genes in these consistent intervals, which belonged to the Glutaredoxin protein family, actin-depolymerizing factors (ADFs), and AMP-binding proteins. In addition, two verified FER QTL regions were found consistent with Fusarium cob rot (FCR) and Fusarium seed rot (FSR). Conclusions These results revealed that multi pathways were involved in FER resistance, which was a complex trait that was controlled by multiple genes with minor effects, and provided important QTL and genes, which could be used in molecular breeding for resistance.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:3次