期刊论文详细信息
IEEE Access
Efficient Hardware Implementation of the LEDAcrypt Decoder
Marco Baldi1  Maurizio Martina1  Kristjane Koleci2  Paolo Santini3  Franco Chiaraluce3  Guido Masera3 
[1] Politecnica delle Marche, Ancona, Italy;Department of Electronics and Telecommunications, Politecnico di Torino, Torino, Italy;Department of Information Engineering, Universit&x00E0;
关键词: Applied cryptography;    post-quantum cryptography;    hardware design;    ASIC;    FPGA;    bit-flipping decoding;   
DOI  :  10.1109/ACCESS.2021.3076245
来源: DOAJ
【 摘 要 】

This work describes an efficient implementation of the iterative decoder that is the main part of the decryption stage in the LEDAcrypt cryptosystem, recently proposed for post-quantum cryptography based on low-density parity-check (LDPC) codes. The implementation we present exploits the structure of the variables in order to accelerate the decoding process while keeping the area bounded. In particular, our focus is on the design of an efficient multiplier, the latter being a fundamental component also in view of considering different values of the cryptosystem’s parameters, as it might be required in future applications. We aim to provide an architecture suitable for low cost implementation on both Field Programmable Gate Array (FPGA) and Application Specific Integrated Circuit (ASIC) implementations. As for the FPGA, the total execution time is 0.6 ms on the Artix-7 200 platform, employing at most 30% of the total available memory, 15% of the total available Look-up Tables and 3% of the Flip-Flops. The ASIC synthesis has been performed for both STM FDSOI 28 nm and UMC CMOS 65 nm technologies. After logic synthesis with the STM FDSOI 28 nm, the proposed decoder achieves a total latency of 0.15 ms and an area occupation of 0.09 mm2. The post-Place&Route implementation results for the UMC 65 nm show a total execution time of 0.3 ms, with an area occupation of 0.42 mm2 and a power consumption of at most 10.5 mW.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次