Current Directions in Biomedical Engineering | |
Closed-loop control system for well-defined oxygen supply in micro-physiological systems | |
Lasagni Andrés Fabían1  Grünzner Stefan1  Steege Tobias2  Sonntag Frank2  Busek Mathias2  | |
[1] Fraunhofer IWS Dresden & TU Dresden Institute of manufacturing technology, George-Bähr-Straße 3c, 01069 Dresden, Germany;Fraunhofer IWS Dresden, Winterbergstraße 28, 01277 Dresden, Germany; | |
关键词: microfluidic; hypoxia; model-in-the-loop; lab-on-a-chip; perfusion; | |
DOI : 10.1515/cdbme-2017-0075 | |
来源: DOAJ |
【 摘 要 】
To improve cell vitality, sufficient oxygen supply is an important factor. A deficiency in oxygen is called Hypoxia and can influence for example tumor growth or inflammatory processes. Hypoxia assays are usually performed with the help of animal or static human cell culture models. The main disadvantage of these methods is that the results are hardly transferable to the human physiology. Microfluidic 3D cell cultivation systems for perfused hypoxia assays may overcome this issue since they can mimic the in-vivo situation in the human body much better. Such a Hypoxia-on-a-Chip system was recently developed. The chip system consists of several individually laser-structured layers which are bonded using a hot press or chemical treatment. Oxygen sensing spots are integrated into the system which can be monitored continuously with an optical sensor by means of fluorescence lifetime detection.
【 授权许可】
Unknown