Veterinary Sciences | |
Genetic Diversity, Biofilm Formation, and Antibiotic Resistance of Pseudomonas aeruginosa Isolated from Cow, Camel, and Mare with Clinical Endometritis | |
Saleem J. Alsunaini1  Ahmed Almuslem1  Mahmoud Fayez1  Abdulaziz S. Al Amer1  Othman M. Alzahrani2  Mohamed Alkafafy3  Amal S. Alswat3  Samy F. Mahmoud3  Shaymaa Yusuf4  Ayman A. Swelum5  | |
[1] Al-Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Ahsa 31982, Saudi Arabia;Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia;Department of Microbiology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt; | |
关键词: antimicrobial resistance; Pseudomonas aeruginosa; carbapenem resistance; MLST; virulence genes; multidrug resistance; | |
DOI : 10.3390/vetsci9050239 | |
来源: DOAJ |
【 摘 要 】
Pseudomonas aeruginosa is a ubiquitous opportunistic bacterium that causes diseases in animals and humans. This study aimed to investigate the genetic diversity, antimicrobial resistance, biofilm formation, and virulence and antibiotic resistance genes of P. aeruginosa isolated from the uterus of cow, camel, and mare with clinical endometritis and their drinking water. Among the 180 uterine swabs and 90 drinking water samples analysed, 54 (20%) P. aeruginosa isolates were recovered. Isolates were identified biochemically to the genus level by the automated Vitek 2 system and genetically by the amplification of the gyrB gene and the sequencing of the 16S rRNA gene. Multilocus sequence typing identified ten different sequence types for the P. aeruginosa isolates. The identification of ST2012 was significantly (p ≤ 0.05) higher than that of ST296, ST308, ST111, and ST241. The isolates exhibited significantly (p ≤ 0.05) increased resistance to piperacillin (77.8%), ciprofloxacin (59.3%), gentamicin (50%), and ceftazidime (38.9%). Eight (14.8%) isolates showed resistance to imipenem; however, none of the isolates showed resistance to colistin. Multidrug resistance (MDR) was observed in 24 isolates (44.4%) with a multiple antibiotic resistance index ranging from 0.44 to 0.77. MDR was identified in 30 (33.3%) isolates. Furthermore, 38.8% and 9.2% of the isolates exhibited a positive extended-spectrum-β-lactamase (ESBL) and metallo-β-lactamase (MBL) phenotype, respectively. The most prevalent β-lactamase encoding genes were blaTEM and blaCTX-M, however, the blaIPM gene was not detected in any of the isolates. Biofilm formation was observed in 49 (90.7%) isolates classified as: 11.1% weak biofilm producers; 38.9% moderate biofilm producers; 40.7% strong biofilm producers. A positive correlation was observed between the MAR index and biofilm formation. In conclusion, the results highlighted that farm animals with clinical endometritis could act as a reservoir for MDR and virulent P. aeruginosa. The emergence of ESBLs and MBLs producing P. aeruginosa in different farm animals is a public health concern. Therefore, surveillance programs to monitor and control MDR P. aeruginosa in animals are required.
【 授权许可】
Unknown