期刊论文详细信息
Genes
A Bi-Exponential Repair Algorithm for Radiation-Induced Double-Strand Breaks: Application to Simulation of Chromosome Aberrations
Ianik Plante1  Zarana Shavers1  Tony Slaba2  Megumi Hada3 
[1] KBR, 2400 NASA Parkway, Houston, TX 77058, USA;NASA Langley Research Center, Hampton, VA 23681, USA;;Radiation Institute for Science &
关键词: dna double-strand breaks;    ionizing radiation;    repair kinetics;    bi-exponential;    chromosome aberrations;   
DOI  :  10.3390/genes10110936
来源: DOAJ
【 摘 要 】

Background: Radiation induces DNA double-strand breaks (DSBs), and chromosome aberrations (CA) form during the DSBs repair process. Several methods have been used to model the repair kinetics of DSBs including the bi-exponential model, i.e., N(t) = N1exp(−t/τ1) + N2exp(−t/τ2), where N(t) is the number of breaks at time t, and N1, N2, τ1 and τ2 are parameters. This bi-exponential fit for DSB decay suggests that some breaks are repaired rapidly and other, more complex breaks, take longer to repair. Methods: The bi-exponential repair kinetics model is implemented into a recent simulation code called RITCARD (Radiation Induced Tracks, Chromosome Aberrations, Repair, and Damage). RITCARD simulates the geometric configuration of human chromosomes, radiation-induced breaks, their repair, and the creation of various categories of CAs. The bi-exponential repair relies on a computational algorithm that is shown to be mathematically exact. To categorize breaks as complex or simple, a threshold for the local (voxel) dose was used. Results: The main findings are: i) the curves for the kinetics of restitution of DSBs are mostly independent of dose; ii) the fraction of unrepaired breaks increases with the linear energy transfer (LET) of the incident radiation; iii) the simulated dose−response curves for simple reciprocal chromosome exchanges that are linear-quadratic; iv) the alpha coefficient of the dose−response curve peaks at about 100 keV/µm.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次