期刊论文详细信息
Antioxidants
S-Nitrosylation: An Emerging Paradigm of Redox Signaling
Veani Fernando1  Vandana Sharma1  Xunzhen Zheng1  Saori Furuta1  Yashna Walia1  Joshua Letson1 
[1] Department of Cancer Biology, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA;
关键词: NO;    S-nitrosylation;    NOS;    ROS;    antioxidant;    redox regulation;   
DOI  :  10.3390/antiox8090404
来源: DOAJ
【 摘 要 】

Nitric oxide (NO) is a highly reactive molecule, generated through metabolism of L-arginine by NO synthase (NOS). Abnormal NO levels in mammalian cells are associated with multiple human diseases, including cancer. Recent studies have uncovered that the NO signaling is compartmentalized, owing to the localization of NOS and the nature of biochemical reactions of NO, including S-nitrosylation. S-nitrosylation is a selective covalent post-translational modification adding a nitrosyl group to the reactive thiol group of a cysteine to form S-nitrosothiol (SNO), which is a key mechanism in transferring NO-mediated signals. While S-nitrosylation occurs only at select cysteine thiols, such a spatial constraint is partially resolved by transnitrosylation, where the nitrosyl moiety is transferred between two interacting proteins to successively transfer the NO signal to a distant location. As NOS is present in various subcellular locales, a stress could trigger concerted S-nitrosylation and transnitrosylation of a large number of proteins involved in divergent signaling cascades. S-nitrosylation is an emerging paradigm of redox signaling by which cells confer protection against oxidative stress.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:1次