Water | 卷:14 |
A Stacking Ensemble Learning Model for Monthly Rainfall Prediction in the Taihu Basin, China | |
Shuguang Liu1  Qi Zhuang1  Zhengzheng Zhou1  Jiayue Gu1  Sergey R. Chalov2  | |
[1] Department of Hydraulic Engineering, Tongji University, Shanghai 200092, China; | |
[2] Hydrology Department, Faculty of Geography, Lomonosov Moscow State University, 119991 Moscow, Russia; | |
关键词: rainfall; prediction; machine learning; stacking model; Taihu basin; | |
DOI : 10.3390/w14030492 | |
来源: DOAJ |
【 摘 要 】
The prediction of monthly rainfall is greatly beneficial for water resources management and flood control projects. Machine learning (ML) techniques, as an increasingly popular approach, have been applied in diverse climatic regions, showing their respective superiority. On top of that, the ensemble learning model that synthesizes the advantages of different ML models deserves more attention. In this study, an ensemble learning model based on stacking approach was proposed. Four prevalent ML models, namely k-nearest neighbors (KNN), extreme gradient boosting (XGB), support vector regression (SVR), and artificial neural networks (ANN) are taken as base models. To combine the outputs from the base models, the weighting algorithm is used as second-layer learner to generate predictions. Large-scale climate indices, large-scale atmospheric variables, and local meteorological variables were used as predictors. R2, RMSE and MAE, were used as evaluation metrics. The results show that the performance of base models varied among the nine stations in the Taihu Basin, while the stacking approach generally performed better than the four base models. The stacking model showed better performance in spring and winter than in summer and autumn. During wet months, the accuracy of model prediction varied more significantly. On the whole, based on performance evaluation measures, it is concluded that the proposed stacking ensemble multi-ML model can provide a flexible and reasonable prediction framework applicable to other regions.
【 授权许可】
Unknown