期刊论文详细信息
BMC Musculoskeletal Disorders
Individualized 3D printing-assisted repair and reconstruction of neoplastic bone defects at irregular bone sites: exploration and practice in the treatment of scapular aneurysmal bone cysts
Dongyi Li1  Mingyang Yu1  Guochen Luo2  Yao Zhang2  Xiahua Wang2  Shuaishuai Chen2 
[1] Department of Bone and Soft Tissue Oncology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang street, 116001, Dalian, Liaoning Province, China;Department of Bone and Soft Tissue Oncology, Affiliated Zhongshan Hospital of Dalian University, No. 6 Jiefang street, 116001, Dalian, Liaoning Province, China;Dalian Economic and Technological Development Zone, Dalian University, No.10 Xuefu, Dajie, Liaoning, China;
关键词: Aneurysmal bone cyst (ABC);    3D printing;    Bone defect;    Irregular bone;    Repair and reconstruction;    Scapula;    Operation planning;   
DOI  :  10.1186/s12891-021-04859-5
来源: Springer
PDF
【 摘 要 】

BackgroundThe irregular anatomical shape and complex structures of irregular bones make it more difficult to repair and reconstruct bone defects in irregular bones than in the long bones of the extremities. Three-dimensional (3D) printing technology can help to overcome the technical limitations of irregular bone repair by generating simulations that enable structural integration of the lesion area and bone structure of the donor site in all directions and at multiple angles. Thus, personalized and accurate treatment plans for restoring anatomical structure, muscle attachment points, and maximal function can be made. The present study aimed to investigate the ability of 3D printing technology to assist in the repair and reconstruction of scapular aneurysmal ABC defects.MethodsThe study included seven patients with ABCs of the scapula. Based on computed tomography (CT) data for the patient, the scapula (including the defect) and pelvis were reconstructed using Mimics Medical software. The reconstructed scapula model was printed using a 3D printer. Before the operation, the model was used to design the surgical approach and simulate the operation process, to determine the length and radius of the plate and the number and direction of screws, and to determine the bone mass of the ilium and develop reasonable strategies for segmentation and distribution. The operation time, amount of bleeding, length and radius of the plate, and direction and number of screws were recorded.ResultsThe average duration of follow-up was 25.6 months, and none of the seven patients experienced recurrence during the follow-up period. The surgical approach, the length and radius of internal fixation, and the number and direction of screws were consistent with the designed operation plan. Patients gradually recovered the anatomical structure of the scapula and function of the shoulder joint.ConclusionsIn the treatment of bone defects caused by irregular bone tumors, 3D printing technology combined with surgery has the advantages of less trauma, short operation time, less bleeding and reducing the difficulty of operation, which can reduce the waste of bone graft, and more complete reconstruction of the anatomical structure of the defective bone.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202112046378347ZK.pdf 1554KB PDF download
  文献评价指标  
  下载次数:10次 浏览次数:19次