期刊论文详细信息
Malaria Journal
MALBoost: a web-based application for gene regulatory network analysis in Plasmodium falciparum
Riëtte van Biljon1  Lyn-Marie Birkholtz2  Roelof van Wyk2 
[1] Department of Biochemistry and Molecular Biology and the Huck Centre for Malaria Research, Pennsylvania State University, 16802, University Park, PA, USA;Department of Biochemistry, Genetics and Microbiology and the Institute for Sustainable Malaria Control, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa;
关键词: Gene regulatory network;    Malaria;    Plasmodium falciparum;    Machine learning;    Artificial intelligence;   
DOI  :  10.1186/s12936-021-03848-2
来源: Springer
PDF
【 摘 要 】

BackgroundGene Regulatory Networks (GRN) produce powerful insights into transcriptional regulation in cells. The power of GRNs has been underutilized in malaria research. The Arboreto library was incorporated into a user-friendly web-based application for malaria researchers (http://malboost.bi.up.ac.za). This application will assist researchers with gaining an in depth understanding of transcriptomic datasets.MethodsThe web application for MALBoost was built in Python-Flask with Redis and Celery workers for queue submission handling, which execute the Arboreto suite algorithms. A submission of 5–50 regulators and total expression set of 5200 genes is permitted. The program runs in a point-and-click web user interface built using Bootstrap4 templates. Post-analysis submission, users are redirected to a status page with run time estimates and ultimately a download button upon completion. Result updates or failure updates will be emailed to the users.ResultsA web-based application with an easy-to-use interface is presented with a use case validation of AP2-G and AP2-I. The validation set incorporates cross-referencing with ChIP-seq and transcriptome datasets. For AP2-G, 5 ChIP-seq targets were significantly enriched with seven more targets presenting with strong evidence of validated targets.ConclusionThe MALBoost application provides the first tool for easy interfacing and efficiently allows gene regulatory network construction for Plasmodium. Additionally, access is provided to a pre-compiled network for use as reference framework. Validation for sexually committed ring-stage parasite targets of AP2-G, suggests the algorithm was effective in resolving “traditionally” low-level signatures even in bulk RNA datasets.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202108121880829ZK.pdf 1896KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:2次