期刊论文详细信息
BMC Microbiology
SpoVG is an important regulator of sporulation and affects biofilm formation by regulating Spo0A transcription in Bacillus cereus 0–9
Juanmei Zhang1  Zhen Zhang2  Qing Liu2  Fengying Liu3  Yupeng Liu3  Gang Wang3  Qiubin Huang3 
[1] Engineering Research Center for Applied Microbiology of Henan Province, 475004, Kaifeng, China;School of Pharmaceutical, Henan Univeristy, 475004, Kaifeng, China;Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, 475004, Kaifeng, China;Institute of Microbial Engineering, Laboratory of Bioresource and Applied Microbiology, School of Life Sciences, Henan University, Jinming Street, 475004, Kaifeng, China;Engineering Research Center for Applied Microbiology of Henan Province, 475004, Kaifeng, China;
关键词: Biofilm;    SpoVG;    Sporulation;    SinI/R;    Spo0A;    Bacillus cereus;   
DOI  :  10.1186/s12866-021-02239-6
来源: Springer
PDF
【 摘 要 】

BackgroundBacillus cereus 0–9, a Gram-positive, endospore-forming bacterium isolated from healthy wheat roots in our previous research, is considered to be an effective biocontrol strain against several soil-borne plant diseases. SpoVG, a regulator that is broadly conserved among many Gram-positive bacteria, may help this organism coordinate environmental growth and virulence to survive. This study aimed to explore the multiple functions of SpoVG in B. cereus 0–9.MethodsThe gene knockout strains were constructed by homologous recombination, and the sporulation process of B. cereus 0–9 and its mutants were observed by fluorescence staining method. We further determined the spore yields and biofilm formation abilities of test strains. Transcriptional fusion strains were constructed by overlapping PCR technique, and the promoter activity of the target gene was detected by measuring its fluorescence intensity. The biofilm production and colonial morphology of B. cereus 0–9 and its mutants were determined to study the functions of the target genes, and the transcription level of the target gene was determined by qRT-PCR.ResultsAccording to observation of the sporulation process of B. cereus 0–9 in germination medium, SpoVG is crucial for regulating sporulation stage V of B. cereus 0–9, which is identical to that of Bacillus subtilis but differs from that of Bacillus anthracis. In addition, SpoVG could influence biofilm formation of B. cereus 0–9. The transcription levels of two genes closely related to biofilm-formation, sipW and calY, were downregulated in a ΔspoVG mutant. The role of SpoVG in regulating biofilm formation was further explored by deleting the genes abrB and sinR in the ΔspoVG mutant, respectively, generating the double mutant strains ΔspoVGΔabrB and ΔspoVGΔsinR. The phenotypes of these double mutants were congruent with those of the single abrB and sinR deletion strains, respectively, which showed increased biofilm formation. This indicated that spoVG was located upstream of abrB and sinR in the regulatory pathway of B. cereus biofilm formation. Further, the results of qRT-PCR and the luminescence intensity of transcriptional fusion strains indicated that spoVG gene deletion could inhibit the transcription of Spo0A.ConclusionsSpoVG, an important regulator in the sporulation of B. cereus, is located upstream of Spo0A and participates in regulation of biofilm formation of B. cereus 0–9 through regulating the transcription level of spo0A. Sporulation and biofilm formation are crucial mechanisms by which bacteria respond to adverse conditions. SpoVG is therefore an important regulator of Spo0A and is crucial for both sporulation and biofilm formation of B. cereus 0–9. This study provides a new insight into the regulatory mechanism of environmental adaptation in bacteria and a foundation for future studies on biofilm formation of B. cereus.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107226726278ZK.pdf 2609KB PDF download
  文献评价指标  
  下载次数:5次 浏览次数:1次