期刊论文详细信息
BMC Genomics
Functional genomics reveals that Clostridium difficile Spo0A coordinates sporulation, virulence and metabolism
Trevor D Lawley3  Jyoti S Choudhary2  Gordon Dougan2  Harry J Flint5  Sylvia H Duncan5  David Goulding2  Melissa J Martin2  Lars Barquist2  Robert P Fagan1  Wiep Klaas Smits4  Lu Yu2  Hilary P Browne2  Laura J Pettit2 
[1]Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
[2]Wellcome Trust Sanger Institute, Hinxton, UK
[3]Bacterial Pathogenesis Laboratory, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK
[4]Department of Medical Microbiology, Leiden University Medical Centre, Leiden, The Netherlands
[5]Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, UK
关键词: Genome annotation;    Transmission;    Butyrate;    Metabolism;    Virulence;    Sporulation;    Proteomics;    RNAseq;    Spo0A;    Clostridium difficile;   
Others  :  1217836
DOI  :  10.1186/1471-2164-15-160
 received in 2013-09-30, accepted in 2014-02-14,  发布年份 2014
PDF
【 摘 要 】

Background

Clostridium difficile is an anaerobic, Gram-positive bacterium that can reside as a commensal within the intestinal microbiota of healthy individuals or cause life-threatening antibiotic-associated diarrhea in immunocompromised hosts. C. difficile can also form highly resistant spores that are excreted facilitating host-to-host transmission. The C. difficile spo0A gene encodes a highly conserved transcriptional regulator of sporulation that is required for relapsing disease and transmission in mice.

Results

Here we describe a genome-wide approach using a combined transcriptomic and proteomic analysis to identify Spo0A regulated genes. Our results validate Spo0A as a positive regulator of putative and novel sporulation genes as well as components of the mature spore proteome. We also show that Spo0A regulates a number of virulence-associated factors such as flagella and metabolic pathways including glucose fermentation leading to butyrate production.

Conclusions

The C. difficile spo0A gene is a global transcriptional regulator that controls diverse sporulation, virulence and metabolic phenotypes coordinating pathogen adaptation to a wide range of host interactions. Additionally, the rich breadth of functional data allowed us to significantly update the annotation of the C. difficile 630 reference genome which will facilitate basic and applied research on this emerging pathogen.

【 授权许可】

   
2014 Pettit et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150708151406512.pdf 1391KB PDF download
Figure 7. 74KB Image download
Figure 6. 38KB Image download
Figure 5. 88KB Image download
Figure 4. 80KB Image download
Figure 3. 56KB Image download
Figure 2. 38KB Image download
Figure 1. 26KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Clements AC, Magalhaes RJ, Tatem AJ, Paterson DL, Riley TV: Clostridium difficile PCR ribotype 027: assessing the risks of further worldwide spread. Lancet Infect Dis 2010, 10(6):395-404.
  • [2]Walker AS, Eyre DW, Wyllie DH, Dingle KE, Harding RM, O’Connor L, Griffiths D, Vaughan A, Finney J, Wilcox MH, Crook DW, Peto TE: Characterisation of Clostridium difficile hospital ward-based transmission using extensive epidemiological data and molecular typing. PLoS Med 2012, 9(2):e1001172.
  • [3]He M, Miyajima F, Roberts P, Ellison L, Pickard DJ, Martin MJ, Connor TR, Harris SR, Fairley D, Bamford KB, D'Arc S, Brazier J, Brown D, Coia JE, Douce G, Gerding D, Kim HJ, Koh TH, Kato H, Senoh M, Louie T, Michell S, Butt E, Peacock SJ, Brown NM, Riley T, Songer G, Wilcox M, Pirmohamed M, Kuijper E, et al.: Emergence and global spread of epidemic healthcare-associated Clostridium difficile. Nat Genet 2012, 45(1):109-113.
  • [4]He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, Martin MJ, Holt KE, Seth-Smith HM, Quail MA, Rance R, Brooks K, Churcher C, Harris D, Bentley SD, Burrows C, Clark L, Corton C, Murray V, Rose G, Thurston S, van Tonder A, Walker D, Wren BW, Dougan G, Parkhill J: Evolutionary dynamics of Clostridium difficile over short and long time scales. Proc Natl Acad Sci USA 2010, 107(16):7527-7532.
  • [5]Sebaihia M, Wren BW, Mullany P, Fairweather NF, Minton N, Stabler R, Thomson NR, Roberts AP, Cerdeno-Tarraga AM, Wang H, Holden MT, Wright A, Churcher C, Quail MA, Baker S, Bason N, Brooks K, Chillingworth T, Cronin A, Davis P, Dowd L, Fraser A, Feltwell T, Hance Z, Holroyd S, Jagels K, Moule S, Mungall K, Price C, Rabbinowitsch E, et al.: The multidrug-resistant human pathogen Clostridium difficile has a highly mobile, mosaic genome. Nat Genet 2006, 38(7):779-786.
  • [6]Stabler RA, He M, Dawson L, Martin M, Valiente E, Corton C, Lawley TD, Sebaihia M, Quail MA, Rose G, Gerding DN, Gibert M, Popoff MR, Parkhill J, Dougan G, Wren BW: Comparative genome and phenotypic analysis of Clostridium difficile 027 strains provides insight into the evolution of a hypervirulent bacterium. Genome Biol 2009, 10(9):R102. BioMed Central Full Text
  • [7]Gerding DN: Clindamycin, cephalosporins, fluoroquinolones, and Clostridium difficile-associated diarrhea: this is an antimicrobial resistance problem. Clin Infect Dis 2004, 38(5):646-648.
  • [8]Kelly CP, Kyne L: The host immune response to Clostridium difficile. J Med Microbiol 2011, 60(Pt 8):1070-1079.
  • [9]Chang JY, Antonopoulos DA, Kalra A, Tonelli A, Khalife WT, Schmidt TM, Young VB: Decreased diversity of the fecal Microbiome in recurrent Clostridium difficile-associated diarrhea. J Infect Dis 2008, 197(3):435-438.
  • [10]Wilcox MH, Fraise AP, Bradley CR, Walker J, Finch RG: Sporicides for Clostridium difficile: the devil is in the detail. J Hosp Infect 2011, 77(3):187-188.
  • [11]Paredes CJ, Alsaker KV, Papoutsakis ET: A comparative genomic view of clostridial sporulation and physiology. Nat Rev Microbiol 2005, 3(12):969-978.
  • [12]Chastanet A, Vitkup D, Yuan GC, Norman TM, Liu JS, Losick RM: Broadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis. Proc Natl Acad Sci USA 2010, 107(18):8486-8491.
  • [13]Galperin MY, Mekhedov SL, Puigbo P, Smirnov S, Wolf YI, Rigden DJ: Genomic determinants of sporulation in Bacilli and Clostridia: towards the minimal set of sporulation-specific genes. Environ Microbiol 2012, 14(11):2870-2890.
  • [14]Heap JT, Pennington OJ, Cartman ST, Carter GP, Minton NP: The ClosTron: a universal gene knock-out system for the genus Clostridium. J Microbiol Methods 2007, 70(3):452-464.
  • [15]Underwood S, Guan S, Vijayasubhash V, Baines SD, Graham L, Lewis RJ, Wilcox MH, Stephenson K: Characterization of the sporulation initiation pathway of Clostridium difficile and its role in toxin production. J Bacteriol 2009, 191(23):7296-7305.
  • [16]Hahn J, Roggiani M, Dubnau D: The major role of Spo0A in genetic competence is to downregulate abrB, an essential competence gene. J Bacteriol 1995, 177(12):3601-3605.
  • [17]Hamon MA, Lazazzera BA: The sporulation transcription factor Spo0A is required for biofilm development in Bacillus subtilis. Mol Microbiol 2001, 42(5):1199-1209.
  • [18]Lucking G, Dommel MK, Scherer S, Fouet A, Ehling-Schulz M: Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology 2009, 155(Pt 3):922-931.
  • [19]Saile E, Koehler TM: Control of anthrax toxin gene expression by the transition state regulator abrB. J Bacteriol 2002, 184(2):370-380.
  • [20]Alsaker KV, Spitzer TR, Papoutsakis ET: Transcriptional analysis of spo0A overexpression in Clostridium acetobutylicum and its effect on the cell’s response to butanol stress. J Bacteriol 2004, 186(7):1959-1971.
  • [21]Rosenbusch KE, Bakker D, Kuijper EJ, Smits WK: C. difficile 630Deltaerm Spo0A regulates sporulation, but does not contribute to toxin production, by direct high-affinity binding to target DNA. PloS One 2012, 7(10):e48608.
  • [22]Mackin KE, Carter GP, Howarth P, Rood JI, Lyras D: Spo0A differentially regulates toxin production in evolutionarily diverse strains of clostridium difficile. PloS One 2013, 8(11):e79666.
  • [23]Deakin LJ, Clare S, Fagan RP, Dawson LF, Pickard DJ, West MR, Wren BW, Fairweather NF, Dougan G, Lawley TD: Clostridium difficile spo0A gene is a persistence and transmission factor. Infect Immun 2012, 80(8):2704-2711.
  • [24]Dawson LF, Valiente E, Faulds-Pain A, Donahue EH, Wren BW: Characterisation of Clostridium difficile biofilm formation, a role for Spo0A. PloS One 2012, 7(12):e50527.
  • [25]Ethapa T, Leuzzi R, Ng YK, Baban ST, Adamo R, Kuehne SA, Scarselli M, Minton NP, Serruto D, Unnikrishnan M: Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 2013, 195(3):545-555.
  • [26]Wilson KH, Kennedy MJ, Fekety FR: Use of sodium taurocholate to enhance spore recovery on a medium selective for Clostridium difficile. J Clin Microbiol 1982, 15(3):443-446.
  • [27]Lawley TD, Croucher NJ, Yu L, Clare S, Sebaihia M, Goulding D, Pickard DJ, Parkhill J, Choudhary J, Dougan G: Proteomic and genomic characterization of highly infectious Clostridium difficile 630 spores. J Bacteriol 2009, 191(17):5377-5386.
  • [28]Fimlaid KA, Bond JP, Schutz KC, Putnam EE, Leung JM, Lawley TD, Shen A: Global analysis of the sporulation pathway of clostridium difficile. PLoS Genet 2013, 9(8):e1003660.
  • [29]Pereira FC, Saujet L, Tome AR, Serrano M, Monot M, Couture-Tosi E, Martin-Verstraete I, Dupuy B, Henriques AO: The spore differentiation pathway in the enteric pathogen Clostridium difficile. PLoS Genet 2013, 9(10):e1003782.
  • [30]Monot M, Boursaux-Eude C, Thibonnier M, Vallenet D, Moszer I, Medigue C, Martin-Verstraete I, Dupuy B: Reannotation of the genome sequence of Clostridium difficile strain 630. J Med Microbiol 2011, 60(Pt 8):1193-1199.
  • [31]Punta M, Coggill PC, Eberhardt RY, Mistry J, Tate J, Boursnell C, Pang N, Forslund K, Ceric G, Clements J, Heger A, Holm L, Sonnhammer EL, Eddy SR, Bateman A, Finn RD: The Pfam protein families database. Nucleic Acids Res 2012, 40(Database issue):D290-D301.
  • [32]Sigrist CJ, Cerutti L, de Castro E, Langendijk-Genevaux PS, Bulliard V, Bairoch A, Hulo N: PROSITE, a protein domain database for functional characterization and annotation. Nucleic Acids Res 2010, 38(Database issue):D161-D166.
  • [33]Petersen TN, Brunak S, von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8(10):785-786.
  • [34]Sonnhammer EL, von Heijne G, Krogh A: A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 1998, 6:175-182.
  • [35]Riley M: Functions of the gene products of Escherichia coli. Microbiol Rev 1993, 57(4):862-952.
  • [36]Permpoonpattana P, Tolls EH, Nadem R, Tan S, Brisson A, Cutting SM: Surface layers of Clostridium difficile endospores. J Bacteriol 2011, 193(23):6461-6470.
  • [37]Permpoonpattana P, Phetcharaburanin J, Mikelsone A, Dembek M, Tan S, Brisson MC, La Ragione R, Brisson AR, Fairweather N, Hong HA, Cutting SM: Functional characterization of Clostridium difficile spore coat proteins. J Bacteriol 2013, 195(7):1492-1503.
  • [38]Braun V, Mehlig M, Moos M, Rupnik M, Kalt B, Mahony DE, von Eichel-Streiber C: A chimeric ribozyme in Clostridium difficile combines features of group I introns and insertion elements. Mol Microbiol 2000, 36(6):1447-1459.
  • [39]Hasselmayer O, Braun V, Nitsche C, Moos M, Rupnik M, von Eichel-Streiber C: Clostridium difficile IStron CdISt1: discovery of a variant encoding two complete transposase-like proteins. J Bacteriol 2004, 186(8):2508-2510.
  • [40]Haraldsen JD, Sonenshein AL: Efficient sporulation in Clostridium difficile requires disruption of the sigmaK gene. Mol Microbiol 2003, 48(3):811-821.
  • [41]Fagan RP, Janoir C, Collignon A, Mastrantonio P, Poxton IR, Fairweather NF: A proposed nomenclature for cell wall proteins of Clostridium difficile. J Med Microbiol 2011, 60(Pt 8):1225-1228.
  • [42]McBride SM, Sonenshein AL: Identification of a genetic locus responsible for antimicrobial peptide resistance in Clostridium difficile. Infect Immun 2011, 79(1):167-176.
  • [43]Suarez JM, Edwards AN, McBride SM: The Clostridium difficile cpr locus is regulated by a noncontiguous two-component system in response to type a and B lantibiotics. J Bacteriol 2013, 195(11):2621-2631.
  • [44]Ho TD, Ellermeier CD: PrsW is required for colonization, resistance to antimicrobial peptides, and expression of extracytoplasmic function sigma factors in Clostridium difficile. Infect Immun 2011, 79(8):3229-3238.
  • [45]Tomas CA, Alsaker KV, Bonarius HP, Hendriksen WT, Yang H, Beamish JA, Paredes CJ, Papoutsakis ET: DNA array-based transcriptional analysis of asporogenous, nonsolventogenic Clostridium acetobutylicum strains SKO1 and M5. J Bacteriol 2003, 185(15):4539-4547.
  • [46]Higgins D, Dworkin J: Recent progress in Bacillus subtilis sporulation. FEMS Microbiol Rev 2012, 36(1):131-148.
  • [47]Shafikhani SH, Mandic-Mulec I, Strauch MA, Smith I, Leighton T: Postexponential regulation of sin operon expression in Bacillus subtilis. J Bacteriol 2002, 184(2):564-571.
  • [48]Francis MB, Allen CA, Shrestha R, Sorg JA: Bile acid recognition by the Clostridium difficile germinant receptor, CspC, is important for establishing infection. PLoS Pathog 2013, 9(5):e1003356.
  • [49]Putnam EE, Nock AM, Lawley TD, Shen A: SpoIVA and SipL are Clostridium difficile spore morphogenetic proteins. J Bacteriol 2013, 195(6):1214-1225.
  • [50]Saujet L, Pereira FC, Serrano M, Soutourina O, Monot M, Shelyakin PV, Gelfand MS, Dupuy B, Henriques AO, Martin-Verstraete I: Genome-wide analysis of cell type-specific gene transcription during spore formation in Clostridium difficile. PLoS Genet 2013, 9(10):e1003756.
  • [51]Zhang B, Daniel RA, Errington J, Kroos L: Bacillus subtilis SpoIIID protein binds to two sites in the spoVD promoter and represses transcription by sigmaE RNA polymerase. J Bacteriol 1997, 179(3):972-975.
  • [52]Cartman ST, Minton NP: A mariner-based transposon system for in vivo random mutagenesis of Clostridium difficile. Appl Environ Microbiol 2010, 76(4):1103-1109.
  • [53]Bouillaut L, Self WT, Sonenshein AL: Proline-dependent regulation of Clostridium difficile Stickland metabolism. J Bacteriol 2013, 195(4):844-854.
  • [54]Dineen SS, McBride SM, Sonenshein AL: Integration of metabolism and virulence by Clostridium difficile CodY. J Bacteriol 2010, 192(20):5350-5362.
  • [55]Antunes A, Martin-Verstraete I, Dupuy B: CcpA-mediated repression of Clostridium difficile toxin gene expression. Mol Microbiol 2011, 79(4):882-899.
  • [56]Mani N, Dupuy B: Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor. Proc Natl Acad Sci USA 2001, 98(10):5844-5849.
  • [57]Hundsberger T, Braun V, Weidmann M, Leukel P, Sauerborn M, von Eichel-Streiber C: Transcription analysis of the genes tcdA-E of the pathogenicity locus of Clostridium difficile. Eur J Biochem/FEBS 1997, 244(3):735-742.
  • [58]Warny M, Pepin J, Fang A, Killgore G, Thompson A, Brazier J, Frost E, McDonald LC: Toxin production by an emerging strain of Clostridium difficile associated with outbreaks of severe disease in North America and Europe. Lancet 2005, 366(9491):1079-1084.
  • [59]McBride SM, Sonenshein AL: The dlt operon confers resistance to cationic antimicrobial peptides in Clostridium difficile. Microbiology 2011, 157(Pt 5):1457-1465.
  • [60]Twine SM, Reid CW, Aubry A, McMullin DR, Fulton KM, Austin J, Logan SM: Motility and flagellar glycosylation in Clostridium difficile. J Bacteriol 2009, 191(22):7050-7062.
  • [61]Aboulnaga EH, Pinkenburg O, Schiffels J, El-Refai A, Buckel W, Selmer T: Butyrate production in Escherichia coli: Exploitation of an oxygen tolerant bifurcating butyryl-CoA dehydrogenase/electron transferring flavoprotein complex from Clostridium difficile. J Bacteriol 2013, 195(16):3704-3713.
  • [62]Lawley TD, Clare S, Walker AW, Goulding D, Stabler RA, Croucher N, Mastroeni P, Scott P, Raisen C, Mottram L, Fairweather NF, Wren BW, Parkhill J, Dougan G: Antibiotic treatment of Clostridium difficile carrier mice triggers a supershedder state, spore-mediated transmission, and severe disease in immunocompromised hosts. Infect Immun 2009, 77(9):3661-3669.
  • [63]Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, Raisen C, Goulding D, Rad R, Schreiber F, Brandt C, Lawley TD, Clare S, Walker AW, Stares MD, Connor TR, Raisen C, Goulding D, Rad R, Schreiber F, Brandt C, Deakin LJ, Pickard DJ, Duncan SH, Flint HJ, Clark TG, Parkhill J, Dougan G: Targeted Restoration of the Intestinal Microbiota with a Simple, Defined Bacteriotherapy Resolves Relapsing Clostridium difficile Disease in Mice. PLoS Pathog 2012, 8(10):e1002995.
  • [64]Johansson ME, Larsson JM, Hansson GC: The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. Proc Natl Acad Sci USA 2011, 108(Suppl 1):4659-4665.
  • [65]Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ: Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008, 27(2):104-119.
  • [66]Harris LM, Welker NE, Papoutsakis ET: Northern, morphological, and fermentation analysis of spo0A inactivation and overexpression in Clostridium acetobutylicum ATCC 824. J Bacteriol 2002, 184(13):3586-3597.
  • [67]Chen X, Katchar K, Goldsmith JD, Nanthakumar N, Cheknis A, Gerding DN, Kelly CP: A Mouse Model of Clostridium difficile-Associated Disease. Gastroenterology 2008, 135(6):1984-1992.
  • [68]Theriot CM, Koumpouras CC, Carlson PE, Bergin II, Aronoff DM, Young VB: Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains. Gut Microbes 2011, 2(6):326-334.
  • [69]Martin MJ, Clare S, Goulding D, Faulds-Pain A, Barquist L, Browne HP, Pettit L, Dougan G, Lawley TD, Wren BW: The agr locus regulates virulence and colonization genes in Clostridium difficile 027. J Bacteriol 2013, 195(16):3672-3681.
  • [70]Croucher NJ, Fookes MC, Perkins TT, Turner DJ, Marguerat SB, Keane T, Quail MA, He M, Assefa S, Bahler J, Kingsley RA, Parkhill J, Bentley SD, Dougan G, Thomson NR: A simple method for directional transcriptome sequencing using Illumina technology. Nucleic Acids Res 2009, 37(22):e148.
  • [71]Anders S, Huber W: Differential expression analysis for sequence count data. Genome Biol 2010, 11(10):R106. BioMed Central Full Text
  • [72]Boersema PJ, Aye TT, van Veen TA, Heck AJ, Mohammed S: Triplex protein quantification based on stable isotope labeling by peptide dimethylation applied to cell and tissue lysates. Proteomics 2008, 8(22):4624-4632.
  • [73]Richardson AJ, Calder AG, Stewart CS, Smith A: Simultaneous determination of volatile and non-volatile acidic fermentation products of anaerobes by capillary gas chromatography. Lett Appl Microbiol 1989, 9(1):5-8.
  文献评价指标  
  下载次数:25次 浏览次数:26次