期刊论文详细信息
BMC Genomics
Transcription factor MrpC binds to promoter regions of hundreds of developmentally-regulated genes in Myxococcus xanthus
Lee Kroos1  David Kroos1  Bongjun Son1  Mark Robinson1 
[1]Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
关键词: Protein kinase;    Cooperative DNA binding;    Transcription factor;    Gene regulation;    Sporulation;    Fruiting body;    FruA;    ChIP-seq;    Myxococcus xanthus;    MrpC;   
Others  :  1127152
DOI  :  10.1186/1471-2164-15-1123
 received in 2014-06-25, accepted in 2014-12-08,  发布年份 2014
PDF
【 摘 要 】

Background

Myxococcus xanthus is a bacterium that undergoes multicellular development when starved. Cells move to aggregation centers and form fruiting bodies in which cells differentiate into dormant spores. MrpC appears to directly activate transcription of fruA, which also codes for a transcription factor. Both MrpC and FruA are crucial for aggregation and sporulation. The two proteins bind cooperatively in promoter regions of some developmental genes.

Results

Chromatin immunoprecipitation followed by DNA sequencing (ChIP-seq) and bioinformatic analysis of cells that had formed nascent fruiting bodies revealed 1608 putative MrpC binding sites. These sites included several known to bind MrpC and they were preferentially distributed in likely promoter regions, especially those of genes up-regulated during development. The up-regulated genes include 22 coding for protein kinases. Some of these are known to be directly involved in fruiting body formation and several negatively regulate MrpC accumulation. Our results also implicate MrpC as a direct activator or repressor of genes coding for several transcription factors known to be important for development, for a major spore protein and several proteins important for spore formation, for proteins involved in extracellular A- and C-signaling, and intracellular ppGpp-signaling during development, and for proteins that control the fate of other proteins or play a role in motility. We found that the putative MrpC binding sites revealed by ChIP-seq are enriched for DNA sequences that strongly resemble a consensus sequence for MrpC binding proposed previously. MrpC2, an N-terminally truncated form of MrpC, bound to DNA sequences matching the consensus in all 11 cases tested. Using longer DNA segments containing 15 of the putative MrpC binding sites from our ChIP-seq analysis as probes in electrophoretic mobility shift assays, evidence for one or more MrpC2 binding site was observed in all cases and evidence for cooperative binding of MrpC2 and FruA was seen in 13 cases.

Conclusions

We conclude that MrpC and MrpC2 bind to promoter regions of hundreds of developmentally-regulated genes in M. xanthus, in many cases cooperatively with FruA. This binding very likely up-regulates protein kinases, and up- or down-regulates other proteins that profoundly influence the developmental process.

【 授权许可】

   
2014 Robinson et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150220023729614.pdf 1839KB PDF download
Figure 7. 70KB Image download
Figure 6. 61KB Image download
Figure 5. 60KB Image download
Figure 4. 41KB Image download
Figure 3. 35KB Image download
Figure 2. 65KB Image download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Yang Z, Higgs P (Eds): Myxobacteria: genomics, cellular and molecular biology. Norfolk, UK: Caister Academic Press; 2014.
  • [2]Berleman JE, Kirby JR: Deciphering the hunting strategy of a bacterial wolfpack. FEMS Microbiol Rev 2009, 33:942-957.
  • [3]O'Connor KA, Zusman DR: Behavior of peripheral rods and their role in the life cycle of Myxococcus xanthus. J Bacteriol 1991, 173(11):3342-3355.
  • [4]O'Connor KA, Zusman DR: Development in Myxococcus xanthus involves differentiation into two cell types, peripheral rods and spores. J Bacteriol 1991, 173(11):3318-3333.
  • [5]Lee B, Holkenbrink C, Treuner-Lange A, Higgs PI: Myxococcus xanthus developmental cell fate production: heterogeneous accumulation of developmental regulatory proteins and reexamination of the role of MazF in developmental lysis. J Bacteriol 2012, 194(12):3058-3068.
  • [6]Nariya H, Inouye M: MazF, an mRNA interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 2008, 132(1):55-66.
  • [7]O'Connor KA, Zusman DR: Reexamination of the role of autolysis in the development of Myxococcus xanthus. J Bacteriol 1988, 170(9):4103-4112.
  • [8]Wireman JW, Dworkin M: Developmentally induced autolysis during fruiting body formation by Myxococcus xanthus. J Bacteriol 1977, 129:796-802.
  • [9]Kaiser D, Robinson M, Kroos L: Myxobacteria, polarity, and multicellular morphogenesis. Cold Spring Harb Perspect Biol 2010, 2(8):a000380.
  • [10]Goldman BS, Nierman WC, Kaiser D, Slater SC, Durkin AS, Eisen J, Ronning CM, Barbazuk WB, Blanchard M, Field C, Halling C, Hinkle G, Iartchuk O, Kim HS, Mackenzie C, Madupu R, Miller N, Shvartsbeyn A, Sullivan SA, Vaudin M, Wiegand R, Kaplan HB: Evolution of sensory complexity recorded in a myxobacterial genome. Proc Natl Acad Sci USA 2006, 103(41):15200-15205.
  • [11]Munoz-Dorado J, Higgs P, Elias-Arnanz M: Abundance and complexity of signaling mechanisms in myxobacteria. In Myxobacteria: genomics, cellular and molecular biology. Edited by Yang Z, Higgs P. Norfolk, UK: Caister Academic Press; 2014:127-149.
  • [12]Inouye S, Nariya H, Munoz-Dorado J: Protein Ser/Thr kinases and phosphatases in Myxococcus xanthus. In Myxobacteria: multicellularity and differentiation. Edited by Whitworth DE. Washington, DC: ASM Press; 2008:191-210.
  • [13]Rajagopalan R, Sarwar Z, Garza AG, Kroos L: Developmental gene regulation. In Myxobacteria: genomics, cellular and molecular biology. Edited by Yang Z, Higgs P. Norfolk, UK: Caister Academic Press; 2014:105-126.
  • [14]Manoil C, Kaiser D: Accumulation of guanosine tetraphosphate and guanosine pentaphosphate in Myxococcus xanthus during starvation and myxospore formation. J Bacteriol 1980, 141:297-304.
  • [15]Manoil C, Kaiser D: Guanosine pentaphosphate and guanosine tetraphosphate accumulation and induction of Myxococcus xanthus fruiting body development. J Bacteriol 1980, 141(1):305-315.
  • [16]Giglio KM, Caberoy N, Suen G, Kaiser D, Garza AG: A cascade of coregulating enhancer binding proteins initiates and propagates a multicellular developmental program. Proc Natl Acad Sci USA 2011, 108:E431-E439.
  • [17]Higgs PI, Jagadeesan S, Mann P, Zusman DR: EspA, an orphan hybrid histidine protein kinase, regulates the timing of expression of key developmental proteins of Myxococcus xanthus. J Bacteriol 2008, 190:4416-4426.
  • [18]Nariya H, Inouye S: Identification of a protein Ser/Thr kinase cascade that regulates essential transcriptional activators in Myxococcus xanthus development. Mol Microbiol 2005, 58(2):367-379.
  • [19]Diodati ME, Ossa F, Caberoy NB, Jose IR, Hiraiwa W, Igo MM, Singer M, Garza AG: Nla18, a key regulatory protein required for normal growth and development of Myxococcus xanthus. J Bacteriol 2006, 188:1733-1743.
  • [20]Ossa F, Diodati ME, Caberoy NB, Giglio KM, Edmonds M, Singer M, Garza AG: The Myxococcus xanthus Nla4 protein is important for expression of stringent response-associated genes, ppGpp accumulation, and fruiting body development. J Bacteriol 2007, 189(23):8474-8483.
  • [21]Harris BZ, Kaiser D, Singer M: The guanosine nucleotide (p)ppGpp initiates development and A-factor production in Myxococcus xanthus. Genes Dev 1998, 12(7):1022-1035.
  • [22]Singer M, Kaiser D: Ectopic production of guanosine penta-and tetraphosphate can initiate early developmental gene expression in Myxococcus xanthus. Genes and Dev 1995, 9:1633-1644.
  • [23]Caberoy NB, Welch RD, Jakobsen JS, Slater SC, Garza AG: Global mutational analysis of NtrC-like activators in Myxococcus xanthus: identifying activator mutants defective for motility and fruiting body development. J Bacteriol 2003, 185(20):6083-6094.
  • [24]Kuspa A, Plamann L, Kaiser D: Identification of heat-stable A-factor from Myxococcus xanthus. J Bacteriol 1992, 174:3319-3326.
  • [25]Plamann L, Kuspa A, Kaiser D: Proteins that rescue A-signal-defective mutants of Myxococcus xanthus. J Bacteriol 1992, 174:3311-3318.
  • [26]Kuspa A, Kroos L, Kaiser D: Intercellular signaling is required for developmental gene expression in Myxococcus xanthus. Dev Biol 1986, 117:267-276.
  • [27]Kuspa A, Plamann L, Kaiser D: A-signalling and the cell density requirement for Myxococcus xanthus development. J Bacteriol 1992, 174:7360-7369.
  • [28]Sun H, Shi W: Genetic studies of mrp, a locus essential for cellular aggregation and sporulation of Myxococcus xanthus. J Bacteriol 2001, 183(16):4786-4795.
  • [29]Sun H, Shi W: Analyses of mrp genes during Myxococcus xanthus development. J Bacteriol 2001, 183(23):6733-6739.
  • [30]Ueki T, Inouye S: Identification of an activator protein required for the induction of fruA, a gene essential for fruiting body development in Myxococcus xanthus. Proc Natl Acad Sci USA 2003, 100(15):8782-8787.
  • [31]Crawford EW Jr, Shimkets LJ: The Myxococcus xanthus socE and csgA genes are regulated by the stringent response. Mol Microbiol 2000, 37(4):788-799.
  • [32]Konovalova A, Lobach S, Sogaard-Andersen L: A RelA-dependent two-tiered regulated proteolysis cascade controls synthesis of a contact-dependent intercellular signal in Myxococcus xanthus. Mol Microbiol 2012, 84(2):260-275.
  • [33]Gronewold TM, Kaiser D: Mutations of the act promoter in Myxococcus xanthus. J Bacteriol 2007, 189(5):1836-1844.
  • [34]Konovalova A, Wegener-Feldbrugge S, Sogaard-Andersen L: Two intercellular signals required for fruiting body formation in Myxococcus xanthus act sequentially but non-hierarchically. Mol Microbiol 2012, 86(1):65-81.
  • [35]Kim SK, Kaiser D: C-factor: a cell-cell signaling protein required for fruiting body morphogenesis of M. xanthus. Cell 1990, 61:19-26.
  • [36]Lobedanz S, Sogaard-Andersen L: Identification of the C-signal, a contact-dependent morphogen coordinating multiple developmental responses in Myxococcus xanthus. Genes Dev 2003, 17(17):2151-2161.
  • [37]Rolbetzki A, Ammon M, Jakovljevic V, Konovalova A, Sogaard-Andersen L: Regulated secretion of a protease activates intercellular signaling during fruiting body formation in M. xanthus. Dev Cell 2008, 15(4):627-634.
  • [38]Shimkets LJ, Rafiee H: CsgA, an extracellular protein essential for Myxococcus xanthus development. J Bacteriol 1990, 172:5299-5306.
  • [39]Kim SK, Kaiser D: Cell motility is required for the transmission of C-factor, an intercellular signal that coordinates fruiting body morphogenesis of Myxococcus xanthus. Genes Dev 1990, 4:896-905.
  • [40]Kim SK, Kaiser D: Cell alignment required in differentiation of Myxococcus xanthus. Science 1990, 249:926-928.
  • [41]Kroos L, Hartzell P, Stephens K, Kaiser D: A link between cell movement and gene expression argues that motility is required for cell-cell signaling during fruiting body development. Genes Dev 1988, 2:1677-1685.
  • [42]Ellehauge E, Norregaard-Madsen M, Sogaard-Andersen L: The FruA signal transduction protein provides a checkpoint for the temporal co-ordination of intercellular signals in Myxococcus xanthus development. Mol Microbiol 1998, 30:807-817.
  • [43]Jelsbak L, Givskov M, Kaiser D: Enhancer-binding proteins with an FHA domain and the σ54 regulon in Myxococcus xanthus fruiting body development. Proc Natl Acad Sci USA 2005, 102:3010-3015.
  • [44]Nariya H, Inouye S: A protein Ser/Thr kinase cascade negatively regulates the DNA-binding activity of MrpC, a smaller form of which may be necessary for the Myxococcus xanthus development. Mol Microbiol 2006, 60(5):1205-1217.
  • [45]Lee J, Son B, Viswanathan P, Luethy P, Kroos L: Combinatorial regulation of fmgD by MrpC2 and FruA during Myxococcus xanthus development. J Bacteriol 2011, 193:1681-1689.
  • [46]Mittal S, Kroos L: A combination of unusual transcription factors binds cooperatively to control Myxococcus xanthus developmental gene expression. Proc Natl Acad Sci USA 2009, 106:1965-1970.
  • [47]Mittal S, Kroos L: Combinatorial regulation by a novel arrangement of FruA and MrpC2 transcription factors during Myxococcus xanthus development. J Bacteriol 2009, 191:2753-2763.
  • [48]Son B, Liu Y, Kroos L: Combinatorial regulation by MrpC2 and FruA involves three sites in the fmgE promoter region during Myxococcus xanthus development. J Bacteriol 2011, 193:2756-2766.
  • [49]Schramm A, Lee B, Higgs PI: Intra- and inter-protein phosphorylation between two hybrid histidine kinases controls Myxococcus xanthus developmental progression. J Biol Chem 2012, 287:25060-25072.
  • [50]Gill RE, Karlok M, Benton D: Myxococcus xanthus encodes an ATP-dependent protease which is required for developmental gene transcription and intercellular signaling. J Bacteriol 1993, 175:4538-4544.
  • [51]Tojo N, Inouye S, Komano T: The lonD gene is homologous to the lon gene encoding an ATP-dependent protease and is essential for the development of Myxococcus xanthus. J Bacteriol 1993, 175:4545-4549.
  • [52]Valouev A, Johnson DS, Sundquist A, Medina C, Anton E, Batzoglou S, Myers RM, Sidow A: Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat Methods 2008, 5(9):829-834.
  • [53]Campbell A, Viswanathan P, Barrett T, Son B, Saha S, Kroos L: Combinatorial regulation of the dev operon by MrpC2 and FruA during Myxococcus xanthus development. J Bacteriol 2014. in press
  • [54]Brandner JP, Kroos L: Identification of the Ω4400 regulatory region, a developmental promoter of Myxococcus xanthus. J Bacteriol 1998, 180(8):1995-2004.
  • [55]Ueki T, Inouye S: Identification of a gene involved in polysaccharide export as a transcription target of FruA, an essential factor for Myxococcus xanthus development. J Biol Chem 2005, 280(37):32279-32284.
  • [56]Routledge R: Fisher's exact test. In Encyclopedia of Biostatistics. Volume 2. Edited by Armitage P, Colton T. New York: John Wiley; 1998::1519-1523.
  • [57]Muller FD, Treuner-Lange A, Heider J, Huntley SM, Higgs PI: Global transcriptome analysis of spore formation in Myxococcus xanthus reveals a locus necessary for cell differentiation. BMC Genomics 2010, 11:264. BioMed Central Full Text
  • [58]Huntley S, Hamann N, Wegener-Feldbrugge S, Treuner-Lange A, Kube M, Reinhardt R, Klages S, Muller R, Ronning CM, Nierman WC, Sogaard-Andersen L: Comparative genomic analysis of fruiting body formation in Myxococcales. Mol Biol Evol 2010, 28:1083-1097.
  • [59]Shi X, Wegener-Feldbrugge S, Huntley S, Hamann N, Hedderich R, Sogaard-Andersen L: Bioinformatics and experimental analysis of proteins of two-component systems in Myxococcus xanthus. J Bacteriol 2008, 190(2):613-624.
  • [60]Cho K, Zusman DR: Sporulation timing in Myxococcus xanthus is contolled by the espAB locus. Mol Microbiol 1999, 34:714-725.
  • [61]Garza AG, Pollack JS, Harris BZ, Lee A, Keseler IM, Licking EF, Singer M: SdeK is required for early fruiting body development in Myxococcus xanthus. J Bacteriol 1998, 180(17):4628-4637.
  • [62]Stein EA, Cho K, Higgs PI, Zusman DR: Two Ser/Thr protein kinases essential for efficient aggregation and spore morphogenesis in Myxococcus xanthus. Mol Microbiol 2006, 60(6):1414-1431.
  • [63]Apelian D, Inouye S: A new putative sigma factor of Myxococcus xanthus. J Bacteriol 1993, 175:3335-3342.
  • [64]Ueki T, Inouye S: SigB, SigC, and SigE from Myxococcus xanthus homologous to σ32 are not required for heat shock response but for multicellular differentiation. J Mol Micro Biotechnol 2001, 3(2):287-293.
  • [65]Otani M, Kozuka S, Xu C, Umezawa C, Sano K, Inouye S: Protein W, a spore-specific protein in Myxococcus xanthus, formation of a large electron-dense particle in a spore. Mol Microbiol 1998, 30(1):57-66.
  • [66]Yang C, Kaplan HB: Myxococcus xanthus sasS encodes a sensor histidine kinase required for early developmental gene expression. J Bacteriol 1997, 179(24):7759-7767.
  • [67]Nielsen M, Rasmussen AA, Ellehauge E, Treuner-Lange A, Sogaard-Andersen L: HthA, a putative DNA-binding protein, and HthB are important for fruiting body morphogenesis in Myxococcus xanthus. Microbiology 2004, 150(Pt 7):2171-2183.
  • [68]Lee B, Higgs PI, Zusman DR, Cho K: EspC is involved in controlling the timing of development in Myxococcus xanthus. J Bacteriol 2005, 187(14):5029-5031.
  • [69]Cho K, Zusman DR: AsgD, a new two-component regulator required for A-signalling and nutrient sensing during early development of Myxococcus xanthus. Mol Microbiol 1999, 34(2):268-281.
  • [70]Hanlon WA, Inouye M, Inouye S: Pkn9, a Ser/Thr protein kinase involved in the development of Myxococcus xanthus. Mol Microbiol 1997, 23(3):459-471.
  • [71]Munoz-Dorado J, Inouye S, Inouye M: A gene encoding a protein serine/threonine kinase is required for normal development of M. xanthus, a Gram-negative bacterium. Cell 1991, 67:995-1006.
  • [72]Zhang W, Inouye M, Inouye S: Reciprocal regulation of the differentiation of Myxococcus xanthus by Pkn5 and Pkn6, eukaryotic-like Ser/Thr protein kinases. Mol Microbiol 1996, 20(2):435-447.
  • [73]Kirby JR, Zusman DR: Chemosensory regulation of developmental gene expression in Myxococcus xanthus. Proc Natl Acad Sci USA 2003, 100(4):2008-2013.
  • [74]Gronewold TM, Kaiser D: The act operon controls the level and time of C-signal production for Myxococcus xanthus development. Mol Microbiol 2001, 40(3):744-756.
  • [75]Muller FD, Schink CW, Hoiczyk E, Cserti E, Higgs PI: Spore formation in Myxococcus xanthus is tied to cytoskeleton functions and polysaccharide spore coat deposition. Mol Microbiol 2012, 83(3):486-505.
  • [76]Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME SUITE: tools for motif discovery and searching. Nucleic Acids Res 2009, 37:W202-W208.
  • [77]Schneider TD, Stephens RM: Sequence logos: a new way to display consensus sequences. Nucleic Acids Res 1990, 18(20):6097-6100.
  • [78]Kazakov AE, Cipriano MJ, Novichkov PS, Minovitsky S, Vinogradov DV, Arkin A, Mironov AA, Gelfand MS, Dubchak I: RegTransBase–a database of regulatory sequences and interactions in a wide range of prokaryotic genomes. Nucleic Acids Res 2007, 35(Database issue):D407-D412.
  • [79]Laub MT, Chen SL, Shapiro L, McAdams HH: Genes directly controlled by CtrA, a master regulator of the Caulobacter cell cycle. Proc Natl Acad Sci U S A 2002, 99(7):4632-4637.
  • [80]Molle V, Fujita M, Jensen ST, Eichenberger P, Gonzalez-Pastor JE, Liu JS, Losick R: The Spo0A regulon of Bacillus subtilis. Mol Microbiol 2003, 50(5):1683-1701.
  • [81]Eichenberger P, Fujita M, Jensen ST, Conlon EM, Rudner DZ, Wang ST, Ferguson C, Haga K, Sato T, Liu JS, Losick R: The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis. PLoS Biol 2004, 2(10):1664-1683.
  • [82]Park DM, Akhtar MS, Ansari AZ, Landick R, Kiley PJ: The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet 2013, 9(10):e1003839.
  • [83]Bush MJ, Bibb MJ, Chandra G, Findlay KC, Buttner MJ: Genes required for aerial growth, cell division, and chromosome segregation are targets of WhiA before sporulation in Streptomyces venezuelae. MBio 2013, 4(5):e00684-00613.
  • [84]van Kessel JC, Ulrich LE, Zhulin IB, Bassler BL: Analysis of activator and repressor functions reveals the requirements for transcriptional control by LuxR, the master regulator of quorum sensing in Vibrio harveyi. MBio 2013, 4(4):e00378-00313.
  • [85]Zheng D, Constantinidou C, Hobman JL, Minchin SD: Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 2004, 32(19):5874-5893.
  • [86]Grainger DC, Hurd D, Harrison M, Holdstock J, Busby SJ: Studies of the distribution of Escherichia coli cAMP-receptor protein and RNA polymerase along the E. coli chromosome. Proc Natl Acad Sci USA 2005, 102(49):17693-17698.
  • [87]Robison K, McGuire AM, Church GM: A comprehensive library of DNA-binding site matrices for 55 proteins applied to the complete Escherichia coli K-12 genome. J Mol Biol 1998, 284(2):241-254.
  • [88]Hollands K, Busby SJ, Lloyd GS: New targets for the cyclic AMP receptor protein in the Escherichia coli K-12 genome. FEMS Microbiol Lett 2007, 274(1):89-94.
  • [89]Schindler D, Waldminghaus T: "Non-canonical protein-DNA interactions identified by ChIP are not artifacts": response. BMC Genomics 2013, 14:638. BioMed Central Full Text
  • [90]Wu SS, Kaiser D: Regulation of expression of the pilA gene in Myxococcus xanthus. J Bacteriol 1997, 179(24):7748-7758.
  • [91]Moraleda-Munoz A, Perez J, Extremera AL, Munoz-Dorado J: Differential regulation of six heavy metal efflux systems in the response of Myxococcus xanthus to copper. Appl Environ Microbiol 2010, 76(18):6069-6076.
  • [92]Lee K, Shimkets LJ: Suppression of a signaling defect during Myxococcus xanthus development. J Bacteriol 1996, 178(4):977-984.
  • [93]Pollack JS, Singer M: SdeK, a histidine kinase required for Myxococcus xanthus development. J Bacteriol 2001, 183(12):3589-3596.
  • [94]Kroos L: Bacterial development in the fast lane. J Bacteriol 2008, 190:4373-4376.
  • [95]Rajagopalan R, Kroos L: Nutrient-regulated proteolysis of MrpC halts expression of genes important for commitment to sporulation during Myxococcus xanthus development. J Bacteriol 2014, 196:2736-2747.
  • [96]Kuspa A, Kaiser D: Genes required for developmental signaling in Myxococcus xanthus: three asg loci. J Bacteriol 1989, 171:2762-2772.
  • [97]Mayo KA, Kaiser D: asgB, a gene required early for developmental signalling, aggregation, and sporulation of Myxococcus xanthus. Mol Gen Genet 1989, 218:409-418.
  • [98]Plamann L, Davis J, Cantwell B, Mayor J: Evidence that asgB encodes a DNA-binding protein essential for growth and development of Myxococcus xanthus. J Bacteriol 1994, 176:2013-2022.
  • [99]Furusawa G, Dziewanowska K, Stone H, Settles M, Hartzell P: Global analysis of phase variation in Myxococcus xanthus. Mol Microbiol 2011, 81(3):784-804.
  • [100]Jakobsen JS, Jelsbak L, Welch RD, Cummings C, Goldman B, Stark E, Slater S, Kaiser D: σ54 enhancer binding proteins and Myxococcus xanthus fruiting body development. J Bacteriol 2004, 186(13):4361-4368.
  • [101]Li S-F, Lee B, Shimkets LJ: csgA expression entrains Myxococcus xanthus development. Genes Dev 1992, 6:401-410.
  • [102]Toal DR, Clifton S, Roe B, Downard J: The esg locus of Myxococcus xanthus encodes the E1a and E1b subunits of a branced-chain keto acid dehydrogenase. Mol Microbiol 1995, 16:177-189.
  • [103]Ring MW, Schwar G, Thiel V, Dickschat JS, Kroppenstedt RM, Schulz S, Bode HB: Novel iso-branched ether lipids as specific markers of developmental sporulation in the myxobacterium Myxococcus xanthus. J Biol Chem 2006, 281(48):36691-36700.
  • [104]Hoiczyk E, Ring MW, McHugh CA, Schwar G, Bode E, Krug D, Altmeyer MO, Lu JZ, Bode HB: Lipid body formation plays a central role in cell fate determination during developmental differentiation of Myxococcus xanthus. Mol Microbiol 2009, 74(2):497-517.
  • [105]Bhat S, Ahrendt T, Dauth C, Bode HB, Shimkets LJ: Two lipid signals guide fruiting body development of Myxococcus xanthus. MBio 2014, 5(1):e00939-00913.
  • [106]Curtis PD, Geyer R, White DC, Shimkets LJ: Novel lipids in Myxococcus xanthus and their role in chemotaxis. Environ Microbiol 2006, 8(11):1935-1949.
  • [107]Curtis PD, Shimkets LJ: Metabolic pathways relevant to predation, signaling, and development. In Myxobacteria: Multicellularity and Differentiation. Edited by Whitworth DE. Washington, DC: ASM Press; 2008:241-258.
  • [108]Lee K, Shimkets L: Cloning and characterization of the socA locus which restores development to Myxococcus xanthus C-signaling mutants. J Bacteriol 1994, 176:2200-2209.
  • [109]Avadhani M, Geyer R, White DC, Shimkets LJ: Lysophosphatidylethanolamine is a substrate for the short-chain alcohol dehydrogenase SocA from Myxococcus xanthus. J Bacteriol 2006, 188(24):8543-8550.
  • [110]Lorenzen W, Ahrendt T, Bozhuyuk KA, Bode HB: A multifunctional enzyme is involved in bacterial ether lipid biosynthesis. Nat Chem Biol 2014, 10:425-427.
  • [111]Crawford EW, Shimkets LJ: The stringent response in Myxococcus xanthus is regulated by SocE and the CsgA C-signaling protein. Genes Dev 2000, 14(4):483-492.
  • [112]Brenner M, Garza AG, Singer M: nsd, a locus that affects the Myxococcus xanthus cellular response to nutrient concentration. J Bacteriol 2004, 186(11):3461-3471.
  • [113]Licking E, Gorski L, Kaiser D: A common step for changing cell shape in fruiting body and starvation-independent sporulation of Myxococcus xanthus. J Bacteriol 2000, 182(12):3553-3558.
  • [114]Dahl JL, Fordice D: Small acid-soluble proteins with intrinsic disorder are required for UV resistance in Myxococcus xanthus spores. J Bacteriol 2011, 193(12):3042-3048.
  • [115]Wu SS, Kaiser D: Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol Microbiol 1995, 18(3):547-558.
  • [116]Vlamakis HC, Kirby JR, Zusman DR: The Che4 pathway of Myxococcus xanthus regulates type IV pilus-mediated motility. Mol Microbiol 2004, 52(6):1799-1811.
  • [117]Kirby JR, Berleman JE, Muller S, Li D, Scott JC, Wilson JM: Chemosensory signal transduction systems in Myxococcus xanthus. In Myxobacteria: Multicellularity and Differentiation. Edited by Whitworth DE. Washington, DC: ASM Press; 2008:135-148.
  • [118]Hartzell P, Shi W, Youderian P: Gliding motility of Myxococcus xanthus. In Myxobacteria: Multicellularity and Differentiation. Edited by Whitworth DE. Washington, DC: ASM Press; 2008:103-122.
  • [119]Lu A, Cho K, Black WP, Duan XY, Lux R, Yang Z, Kaplan HB, Zusman DR, Shi W: Exopolysaccharide biosynthesis genes required for social motility in Myxococcus xanthus. Mol Microbiol 2005, 55(1):206-220.
  • [120]Lancero H, Caberoy NB, Castaneda S, Li Y, Lu A, Dutton D, Duan XY, Kaplan HB, Shi W, Garza AG: Characterization of a Myxococcus xanthus mutant that is defective for adventurous motility and social motility. Microbiology 2004, 150(Pt 12):4085-4093.
  • [121]Viswanathan P, Ueki T, Inouye S, Kroos L: Combinatorial regulation of genes essential for Myxococcus xanthus development involves a response regulator and a LysR-type regulator. Proc Natl Acad Sci USA 2007, 104:7969-7974.
  • [122]Ozsolak F, Milos PM: RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 2011, 12(2):87-98.
  • [123]Kaiser D: Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc Natl Acad Sci USA 1979, 76:5952-5956.
  • [124]Hodgkin J, Kaiser D: Cell-to-cell stimulation of motility in nonmotile mutants of Myxococcus. Proc Natl Acad Sci USA 1977, 74:2938-2942.
  • [125]Kroos L, Kuspa A, Kaiser D: A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev Biol 1986, 117:252-266.
  • [126]Kroos L, Kaiser D: Expression of many developmentally regulated genes in Myxococcus depends on a sequence of cell interactions. Genes Dev 1987, 1:840-854.
  • [127]Yoder-Himes D, Kroos L: Regulation of the Myxococcus xanthus C-signal-dependent Ω4400 promoter by the essential developmental protein FruA. J Bacteriol 2006, 188:5167-5176.
  • [128]Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 2009, 10(3):R25. BioMed Central Full Text
  • [129]Studier FW, Rosenberg AH, Dunn JJ, Dubendorff JW: Use of T7 RNA polymerase to direct expression of cloned genes. Meth Enzymol 1990, 185:60-89.
  • [130]Sambrook J, Fritsch E, Maniatis T: Molecular Cloning: a laboratory manual. 2nd edition. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1989.
  文献评价指标  
  下载次数:67次 浏览次数:44次