期刊论文详细信息
BMC Systems Biology
Identifying targets of multiple co-regulating transcription factors from expression time-series by Bayesian model comparison
Magnus Rattray2  Neil D Lawrence2  Antti Honkela3  Michalis K Titsias1 
[1] The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK;Department of Computer Science and Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK;Department of Information and Computer Science, Aalto University, Helsinki, Finland
关键词: Systems biology;    Gene regulatory network;    Transcription factor;    Gene regulation;    Bayesian inference;   
Others  :  1144349
DOI  :  10.1186/1752-0509-6-53
 received in 2011-12-20, accepted in 2012-05-30,  发布年份 2012
PDF
【 摘 要 】

Background

Complete transcriptional regulatory network inference is a huge challenge because of the complexity of the network and sparsity of available data. One approach to make it more manageable is to focus on the inference of context-specific networks involving a few interacting transcription factors (TFs) and all of their target genes.

Results

We present a computational framework for Bayesian statistical inference of target genes of multiple interacting TFs from high-throughput gene expression time-series data. We use ordinary differential equation models that describe transcription of target genes taking into account combinatorial regulation. The method consists of a training and a prediction phase. During the training phase we infer the unobserved TF protein concentrations on a subnetwork of approximately known regulatory structure. During the prediction phase we apply Bayesian model selection on a genome-wide scale and score all alternative regulatory structures for each target gene. We use our methodology to identify targets of five TFs regulating Drosophila melanogaster mesoderm development. We find that confident predicted links between TFs and targets are significantly enriched for supporting ChIP-chip binding events and annotated TF-gene interations. Our method statistically significantly outperforms existing alternatives.

Conclusions

Our results show that it is possible to infer regulatory links between multiple interacting TFs and their target genes even from a single relatively short time series and in presence of unmodelled confounders and unreliable prior knowledge on training network connectivity. Introducing data from several different experimental perturbations significantly increases the accuracy.

【 授权许可】

   
2012 Titsias et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150330120604916.pdf 926KB PDF download
Figure 9. 41KB Image download
Figure 8. 48KB Image download
Figure 7. 40KB Image download
Figure 6. 51KB Image download
Figure 5. 41KB Image download
Figure 4. 38KB Image download
Figure 3. 87KB Image download
Figure 2. 58KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D: How to infer gene networks from expression profiles. Mol Syst Biol 2007, 3:78. [ http://dx.doi.org/10.1038/msb4100120 webcite]
  • [2]Wang RS, Zhang XS, Chen L: Inferring transcriptional interactions and regulator activities from experimental data. Mol Cells 2007, 24(3):307-315.
  • [3]De Smet R, Marchal K: Advantages and limitations of current network inference methods. Nat Rev Microbiol 2010, 8(10):717-729. [ http://dx. doi.org/10.1038/nrmicro2419 webcite]
  • [4]Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G: Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci USA 2010, 107(14):6286-6291. [ http://dx.doi. org/10.1073/pnas.0913357107 webcite]
  • [5]Penfold C, Wild D: How to infer gene networks from expression profiles, revisited. Interface Focus 2011, 1(6):857-870.
  • [6]DeRisi JL, Iyer VR, Brown PO: Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997, 278(5338):680-686.
  • [7]Chua G, Robinson MD, Morris Q, Hughes TR: Transcriptional networks: reverse-engineering gene regulation on a global scale. Curr Opin Microbiol 2004, 7(6):638-646. [ http://dx.doi.org/10.1016/j.mib.2004.10. 009 webcite]
  • [8]Chua G, Morris QD, Sopko R, Robinson MD, Ryan O, Chan ET, Frey BJ, Andrews BJ, Boone C, Hughes TR: Identifying transcription factor functions and targets by phenotypic activation. Proc Natl Acad Sci USA 2006, 103(32):12045-12050. [ http://dx.doi.org/10.1073/pnas. 0605140103 webcite]
  • [9]Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA: Genome-wide location and function of DNA binding proteins. Science 2000, 290(5500):2306-2309. [ http://dx.doi.org/10.1126/science. 290.5500.2306 webcite]
  • [10]Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA: Transcriptional regulatory code of a eukaryotic genome. Nature 2004, 431(7004):99-104. [ http://dx.doi.org/10.1038/ nature02800 webcite]
  • [11]MacQuarrie KL, Fong AP, Morse RH, Tapscott SJ: Genome-wide transcription factor binding: beyond direct target regulation. Trends Genet 2011, 27(4):141-148. [ http://dx.doi.org/10.1016/j.tig.2011.01.001 webcite]
  • [12]Zinzen RP, Girardot C, Gagneur J, Braun M, Furlong EEM: Combinatorial binding predicts spatio-temporal cis-regulatory activity. Nature 2009, 462(7269):65-70. [ http://dx.doi.org/10.1038/nature08531 webcite]
  • [13]Beal MJ, Falciani F, Ghahramani Z, Rangel C, Wild DL: A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. Bioinformatics 2005, 21(3):349-356. [ http://dx.doi.org/10. 1093/bioinformatics/bti014 webcite]
  • [14]Werhli AV, Grzegorczyk M, Husmeier D: Comparative evaluation of reverse engineering gene regulatory networks with relevance networks, graphical Gaussian models and Bayesian networks. Bioinformatics 2006, 22(20):2523-2531. [ http://dx.doi.org/10.1093/ bioinformatics/btl391 webcite]
  • [15]Bonneau R, Reiss DJ, Shannon P, Facciotti M, Hood L, Baliga NS, Thorsson V: The Inferelator: an algorithm for learning parsimonious regulatory networks from systems-biology data sets de novo. Genome Biol 2006, 7(5):R36. [ http://dx.doi.org/10.1186/gb-2006-7-5-r36 webcite] BioMed Central Full Text
  • [16]Bansal M, di Bernardo D: Inference of gene networks from temporal gene expression profiles. IET Syst Biol 2007, 1(5):306-312.
  • [17]Aijö T, Lähdesmäki H: Learning gene regulatory networks from gene expression measurements using non-parametric molecular kinetics. Bioinformatics 2009, 25(22):2937-2944. [ http://dx.doi.org/10.1093/ bioinformatics/btp511 webcite]
  • [18]Barenco M, Tomescu D, Brewer D, Callard R, Stark J, Hubank M: Ranked prediction of p53 targets using hidden variable dynamic modeling. Genome Biol 2006, 7(3):R25. BioMed Central Full Text
  • [19]Della Gatta G, Bansal M, Ambesi-Impiombato A, Antonini D, Missero C, di Bernardo D: Direct targets of the TRP63 transcription factor revealed by a combination of gene expression profiling and reverse engineering. Genome Res 2008, 18(6):939-948. [ http://dx.doi.org/10. 1101/gr.073601.107 webcite]
  • [20]Honkela A, Girardot C, Gustafson EH, Liu YH, Furlong EEM, Lawrence ND, Rattray M: Model-based method for transcription factor target identification with limited data. Proc Natl Acad Sci USA 2010, 107(17):7793-7798.
  • [21]Gao P, Honkela A, Rattray M, Lawrence ND: Gaussian process modelling of latent chemical species: applications to inferring transcription factor Activities. Bioinformatics 2008, 24(16):i70-i75.
  • [22]Honkela A, Gao P, Ropponen J, Rattray M, Lawrence ND: tigre: Transcription factor inference through Gaussian process reconstruction of expression for Bioconductor. Bioinformatics 2011, 27(7):1026-1027. [ http://dx.doi.org/10.1093/bioinformatics/btr057 webcite]
  • [23]Madar A, Greenfield A, Ostrer H, Vanden-Eijnden E, Bonneau R: The Inferelator 2.0: a scalable framework for reconstruction of dynamic regulatory network models. Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society 2009, 5448-5451.
  • [24]Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, Xue X, Clarke ND, Altan-Bonnet G, Stolovitzky G: Towards a rigorous assessment of systems biology models: the DREAM3 challenges. PLoS One 2010, 5(2):e9202. [ http://dx.doi.org/10.1371/journal.pone. 0009202 webcite]
  • [25]Greenfield A, Madar A, Ostrer H, Bonneau R: DREAM4: Combining genetic and dynamic information to identify biological networks and dynamical models. PLoS One 2010, 5(10):e13397. [ http://dx.doi.org/ 10.1371/journal.pone.0013397 webcite]
  • [26]Gelman A, Carlin J, Stern H, Rubin D: Bayesian Data Analysis. Boca Raton: Chapman and Hall/CRC; 2003.
  • [27]Veitia RA: A sigmoidal transcriptional response: cooperativity, synergy and dosage effects. Biol Rev Camb Philos Soc 2003, 78:149-170.
  • [28]Black BL, Olson EN: Transcriptional control of muscle development by myocyte enhancer factor-2 (MEF2) proteins. Annu Rev Cell Dev Biol 1998, 14:167-196. [ http://dx.doi.org/10.1146/annurev.cellbio.14.1.167 webcite]
  • [29]Molkentin JD, Black BL, Martin JF, Olson EN: Mutational analysis of the DNA binding, dimerization, and transcriptional activation domains of MEF2C. Mol Cell Biol 1996, 16(6):2627-2636.
  • [30]Castanon I, Stetina SV, Kass J, Baylies MK: Dimerization partners determine the activity of the Twist bHLH protein during Drosophila mesoderm development. Development 2001, 128(16):3145-3159.
  • [31]Zaffran S, Frasch M: The beta 3 tubulin gene is a direct target of bagpipe and biniou in the visceral mesoderm of Drosophila. Mech Dev 2002, 114(1-2):85-93.
  • [32]Zaffran S, Frasch M: The homeodomain of Tinman mediates homo- and heterodimerization of NK proteins. Biochem Biophys Res Commun 2005, 334(2):361-369. [ http://dx.doi.org/10.1016/j.bbrc.2005.06.090 webcite]
  • [33]Tomancak P, Beaton A, Weiszmann R, Kwan E, Shu S, Lewis SE, Richards S, Ashburner M, Hartenstein V, Celniker SE, Rubin GM: Systematic determination of patterns of gene expression during Drosophila embryogenesis. Genome Biol 2002, 3(12):RESEARCH0088.
  • [34]Modelling software and a browser of Drosophila results [ http://www.bioinf.manchester.ac.uk/resources/tiger/multitf/ webcite]
  • [35]Murali T, Pacifico S, Yu J, Guest S, Roberts GG, Finley RL: DroID 2011: a comprehensive, integrated resource for protein, transcription factor, RNA and gene interactions for Drosophila. Nucleic Acids Res 2011, 39(Database issue):D736-D743. [ http://dx.doi.org/10.1093/nar/ gkq1092 webcite]
  • [36]Su YW, Xie TX, Sano D, Myers JN: IL-6 stabilizes Twist and enhances tumor cell motility in head and neck cancer cells through activation of casein kinase 2. PLoS One 2011, 6(4):e19412. [ http://dx.doi.org/10. 1371/journal.pone.0019412 webcite]
  • [37]Stolovitzky G, Monroe D, Califano A: Dialogue on reverse-engineering assessment and methods: the DREAM of high-throughput pathway inference. Ann N Y Acad Sci 2007, 1115:1-22. [ http://dx.doi.org/10.1196/ annals.1407.021 webcite]
  • [38]Barenco M, Brewer D, Papouli E, Tomescu D, Callard R, Stark J, Hubank M: Dissection of a complex transcriptional response using genome-wide transcriptional modelling. Mol Syst Biol 2009, 5:327. [ http://dx.doi.org/10.1038/msb.2009.84 webcite]
  • [39]Alon U: An Introduction to Systems Biology: Design Principles of Biological Circuits. London: Chapman and Hall/CRC; 2006.
  • [40]Sanguinetti G, Ruttor A, Opper M, Archambeau C: Switching regulatory models of cellular stress response. Bioinformatics 2009, 25(10):1280-1286. [ http://dx.doi.org/10.1093/bioinformatics/btp138 webcite]
  • [41]Rasmussen CE, Williams CKI: Gaussian Processes for Machine Learning. MA: MIT Press, Cambridge; 2006.
  • [42]Titsias MK, Lawrence ND, Rattray M: Efficient Sampling for Gaussian Process Inference using Control Variables. In Advances in Neural Information Processing Systems 21 Edited by Koller D, Schuurmans D, Bengio Y, Bottou L. 2009, 1681-1688.
  • [43]Rogers S, Khanin R, Girolami M: Bayesian model-based inference of transcription factor activity. BMC Bioinformatics 2007, 8(Suppl 2):S2. BioMed Central Full Text
  • [44]Robert CP, Casella G: Monte Carlo Statistical Methods. New York: Springer-Verlag; 2004.
  • [45]Chib S: Marginal Likelihood from the Gibbs Output. J Roy Stat Soc B 1995, 90(432):1313-1321.
  • [46]van Someren EP, Vaes BLT, Steegenga WT, Sijbers AM, Dechering KJ, Reinders MJT: Least absolute regression network analysis of the murine osteoblast differentiation network. Bioinformatics 2006, 22(4):477-484.
  • [47]Madar A, Greenfield A, Vanden-Eijnden E, Bonneau R: DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator. PLoS One 2010, 5(3):e9803. [ http://dx.doi.org/10.1371/ journal.pone.0009803 webcite]
  • [48]Andrieu C, Thoms J: A tutorial on adaptive MCMC. Stat Comput 2008, 18:343-373.
  • [49]Calderhead B, Girolami MA: Estimating Bayes factors via thermodynamic integration and population MCMC. Comput Stat Data An 2009, 53(12):4028-4045.
  • [50]Christensen OF, Roberts GO, Sköld, Sköld: Robust Markov chain Monte carlo methods for spatial generalized linear mixed models. J Comput Graph Stat 2006, 15:1-17.
  • [51]Earl DJ, Deem MW: Parallel tempering: Theory, applications, and new perspectives. Phys Chem Chem Phys 2005, 7(23):3910-3916.
  • [52]Friel N, Pettitt AN: Marginal likelihood estimation via power posteriors. J Roy Stat Soc B 2008, 70(3):589-607.
  • [53]Gelman A, Meng XL: Simulating normalizing constants: from importance sampling to bridge sampling to path sampling. Stat Sci 1998, 13(2):163-185.
  • [54]Gelman A, Roberts GO, Gilks WR: Efficient Metropolis jumping rules. In Bayesian Statistics. Volume 5. Edited by Bernardo JM, Berger JO, David AF, Smith AFM. Oxford: Oxford University Press; 1996:599-607.
  • [55]Gelman A, Rubin DB: Inference from iterative simulation using multiple sequences. Stat Sci 1992, 7(4):457-472.
  • [56]Geyer CJ: Practical Markov Chain Monte Carlo. Stat Sci 1992, 7(4):473-483.
  • [57]Girolami M, Calderhead B: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J Roy Stat Soc B 2011, 73(2):123-214.
  • [58]Kuss M, Rasmussen CE: Assessing approximate inference for binary Gaussian process classification. J Mach Learn Res 2005, 6:1679-1704.
  • [59]Murray I, Adams RP: Slice sampling covariance hyperparameters of latent Gaussian models. In Advances in, Neural Information Processing Systems 23 Edited by Lafferty J, Williams CKI, Shawe-Taylor J, Zemel RS, Culotta A. 2010, 1732-1740.
  • [60]Murray I, Adams RP, MacKay DJ: Elliptical slice sampling. JMLR: W&CP 2010, 9:541-548.
  • [61]Neal RM: Annealed importance sampling. Stat Comput 1998, 11:125-139.
  • [62]Newton MA, Raftery AE: Weighted likelihood bootstrap. J Roy Stat Soc B 1994, 56:3-48.
  • [63]Pearson RD, Liu X, Sanguinetti G, Milo M, Lawrence ND, Rattray M: Puma: a Bioconductor package for propagating uncertainty in microarray analysis. BMC Bioinf 2009, 10:211. BioMed Central Full Text
  • [64]Roberts GO, Gelman A, Gilks WR: Weak convergence and optimal scaling of random walk Metropolis algorithms. Ann Appl Probab 1996, 7:110-120.
  • [65]Schmidt MN: Function factorization using warped Gaussian processes. International Conference on Machine Learning 26 2009, 921-928.
  文献评价指标  
  下载次数:109次 浏览次数:8次