期刊论文详细信息
Nanophotonics
Advances in exploiting the degrees of freedom in nanostructured metasurface design: from 1 to 3 to more
article
Zile Li1  Shaohua Yu3  Guoxing Zheng1 
[1] Electronic Information School, Wuhan University;Suzhou Institute of Wuhan University;State Key Laboratory of Optical Communication Technologies and Networks, Wuhan Research Institute of Posts & Telecommunications
关键词: optical metasurface;    geometric phase;    holography;    metalens;    degrees of freedom;    multifunctional device;   
DOI  :  10.1515/nanoph-2020-0127
学科分类:社会科学、人文和艺术(综合)
来源: De Gruyter
PDF
【 摘 要 】

The unusual electromagnetic responses of nanostructured metasurfaces endow them with an ability to manipulate the four fundamental properties (amplitude, phase, polarization, and frequency) of lightwave at the subwavelength scale. Based on this, in the past several years, a lot of innovative optical elements and devices, such as metagratings, metalens, metaholograms, printings, vortex beam generators, or even their combinations, have been proposed, which have greatly empowered the advanced research and applications of metasurfaces in many fields. Behind these achievements are scientists’ continuous exploration of new physics and degrees of freedom in nanostructured metasurface design. This review will focus on the progress on the design of different nanostructured metasurfaces for lightwave manipulation, including by varying/fixing the dimensions and/or orientations of isotropic/anisotropic nanostructures, which can therefore provide various functionalities for different applications. Exploiting the design degrees of freedom of optical metasurfaces provides great flexibility in the design of multifunctional and multiplexing devices, which can be applied in anticounterfeiting, information encoding and hiding, high-density optical storage, multichannel imaging and displays, sensing, optical communications, and many other related fields.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200003214ZK.pdf 17566KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次