期刊论文详细信息
Advances in Nonlinear Analysis
A convex-valued selection theorem with a non-separable Banach space
article
Pascal Gourdel1  Nadia Mâagli1 
[1] Paris School of Economics, Université Paris 1 Panthéon–Sorbonne, Centre d’Economie de la Sorbonne–CNRS, 106-112 Boulevard de l’Hôpital
关键词: Barycentric coordinates;    continuous selections;    lower semicontinuous correspondence;    closed-valued correspondence;    finite-dimensional convex values;    separable Banach spaces;   
DOI  :  10.1515/anona-2016-0053
学科分类:社会科学、人文和艺术(综合)
来源: De Gruyter
PDF
【 摘 要 】

In the spirit of Michael’s selection theorem [6, Theorem 3.1”’], we consider a nonempty convex-valued lower semicontinuous correspondence φ:X→2Y{\varphi:X\to 2^{Y}}. We prove that if φ has either closed or finite-dimensional images, then there admits a continuous single-valued selection, where X is a metric space and Y is a Banach space. We provide a geometric and constructive proof of our main result based on the concept of peeling introduced in this paper.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202107200000707ZK.pdf 744KB PDF download
  文献评价指标  
  下载次数:8次 浏览次数:1次