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1 Introduction
The area of continuous selections is closely associated with the publication by Ernest Michael of two fun-
damental papers [10]. It is important to notice that the axiom of choice ensures the existence of a selection
for any nonempty family of subsets of X (see [9]). Yet, the axiom of choice does not guarantee the continu-
ity of the selection. Michael’s studies are more concerned about continuous selections for correspondences
φ : X → 2Y . He guarantees the continuity under specific structures on X (paracompact spaces, perfectly nor-
mal spaces, collectionwise normal spaces, etc.) and on Y (Banach spaces, separable Banach spaces, Fréchet
spaces, etc.) [5].Without any doubt, themost known selection theorems are: closed-convex valued, compact-
valued, zero-dimensional and finite-dimensional theorems [6–8].

The closed-convex valued theorem is considered as one of the most famous of Michael’s contributions
in the continuous selection theory for correspondences. This theorem gives sufficient conditions for the exis-
tence of a continuous selectionwith the paracompact domain: paracompactness of the domain is a necessary
condition for the existence of continuous selections of lower semicontinuous correspondences into Banach
spaces with convex closed values [9].

However, despite their importance, all the theorems mentioned above were obtained for closed-valued
correspondences. One of the selection theorems obtained by Michael in order to relax the closeness restric-
tion is the convex-valued selection theorem [6, Theorem 3.1”’]. The result was obtained by an alternative
assumption on X (Perfect normality), a separability assumption on Y and an additional assumption involving
three alternative conditions on the images. Besides, Michael shows that when Y = ℝ, then perfect normal-
ity is a necessary and sufficient condition in order to get a continuous selection of any convex-valued lower
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semicontinuous correspondence. The proof of the convex-valued selection theorem is based on the existence
of a dense family of selections. The technique is quite involved and exploits the characterization of perfect
normality of X and separability of Y.

An interesting question is the following: is it possible to relax the separability of Y? To answer this ques-
tion, Michael provided in his paper a counterexample [6, Example 6.3] showing that the separability of Y can
not be omitted. Even though, the correspondence satisfies one of the three conditions,Michael established an
overall conclusion. One question arises naturally: is it possible to omit the separability of Y when the images
satisfy one of the two remaining conditions? This study aims to prove that the answer is affirmative.

The paper is organized as follows: in Section 2, we begin with some definitions and results which will
be very useful in the sequel. Section 3 is dedicated to recall the two Michael’s selection theorems that will
be used later: the closed-convex valued and the convex-valued theorems. In Section 4, we first state a partial
result when the dimension of the images is finite and constant. Then, we introduce andmotivate the concept
of peeling. Finally, we state the general case and Sections 5 and 6 provide the proofs of our results.

2 Preliminaries and notations
We start by introducing some notations which will be useful throughout this paper.

2.1 Notations

Let Y be a normed space and C ⊂ Y. We shall denote
(i) by C the closure of C in Y,
(ii) by co(C) the convex hull of C and by aff(C) the affine space of C,
(iii) by dima(C) = dimaff(C) the dimension of C which is by definition the dimension of aff(C),
(iv) if C is finite-dimensional¹, then ri(C) the relative interior of C in aff(C) is given by

ri(C) = {x ∈ C | there exists a neighborhood Vx of x such that Vx ∩ aff(C) ⊂ C},

(v) by BC(a, r) := B(a, r) ∩ aff(C), where B(a, r) is the open ball of radius r > 0 centered at a point a ∈ X
and BC(a, r) := B(a, r) ∩ aff(C), where B(a, r) is the closed ball of radius r > 0 centered at a point a ∈ X,

(vi) by Si−1(0, 1) := {x = (x1, . . . , xi) ∈ ℝi | ‖x‖ = 1} the unit (i − 1)-sphere ofℝi embedded with the euclid-
ean norm,

(vii) by (Ypai)p∈ℕ the set of affinely independent families of (Yp)p∈ℕ.
We recall that if {x0, x1, . . . , xi} is a set of i + 1 affinely independent points of Y. We call an i-simplex the

convex hull of {x0, x1, . . . , xi} given by

Si = {z ∈ Y
!!!!!!!!!
z =

i
∑
k=0

αkxk , αk ≥ 0,
i
∑
k=0

αk = 1} = co(x0, . . . , xi).

2.2 Classical definitions

Wego onwith formal definitions and related terms of correspondences. Let us consider nonempty topological
spaces X and Y.

Definition 2.1. Let φ : X → 2Y be a correspondence, B ⊂ Y. We define by

φ+(B) = {x ∈ X | φ(x) ⊂ B}, φ−(B) = {x ∈ X | φ(x) ∩ B ̸= 0}.

1 The space C is said to be finite-dimensional if C is contained in a finite-dimensional subspace of Y.



P. Gourdel and N. Mâagli, A convex-valued selection theorem | 199

Definition 2.2. Letφ : X → 2Y be any correspondence. A correspondenceψ : X → 2Y satisfyingψ(x) ⊂ φ(x),
for each x ∈ X, is called a selection of φ. In particular, if ψ is single-valued (associated to some function
f : X → Y), then f is a single-valued selection when f(x) ∈ φ(x), for each x ∈ X.

We recall some alternative characteristics of lower semicontinuous correspondences.

Definition 2.3 ([3]). Letφ : X → 2Y be a correspondence.We say thatφ is lower semicontinuous (abbreviated
to lsc) if one of the equivalent conditions is satisfied.
(i) For all open sets V ⊂ Y, we have that φ−(V) is open.
(ii) For all closed sets V ⊂ Y, we have that φ+(V) is closed.

In the case of metric spaces, an alternative characterization is given by the following proposition.

Proposition 2.4 ([3]). Let X and Y be metric spaces and φ : X → 2Y a correspondence. We have that φ is lsc
on X if and only if for all x ∈ X, for all convergent sequences (xn)n∈ℕ to x, and for all y ∈ φ(x), there exists a
sequence (yn)n≥n0 in Y such that yn → y and for all n ≥ n0, we have yn ∈ φ(xn).

3 Michael’s selection theorems (1956)
Let us first recall one of the main selection theorems: the closed-convex valued selection theorem.

Theorem 3.1 (Closed-convex valued selection theorem). Let X be a paracompact space, Y a Banach space
and φ : X → 2Y an lsc correspondencewith nonempty closed convex values. Then φ admits a continuous single-
valued selection.

Before stating the next theorem, we recall² that a topological space is perfectly normal if it is normal and
every closed subset is a G-delta subset (Gδ).

The followingMichael selection theoremdedicated for non-closed valued correspondences ismuchmore
difficult to prove. The assumption on Y is reinforced by adding the separability. We recall that perfect nor-
mality does neither imply paracompactness nor the converse.

Theorem 3.2 (Convex-valued selection theorem). Let X be a perfectly normal space, Y a separable Banach
space and φ : X → Y an lsc correspondence with nonempty convex values. If for any x ∈ X, φ(x) is either
finite-dimensional, or closed, or has an interior point, then φ admits a continuous single-valued selection.

Note that as explained before, in his paper [6, Example 6.3], Michael provided the following counterexample
showing that the assumption of separability of Y can not be omitted in Theorem 3.2.

Example 3.3. There exists an lsc correspondence φ from the closed unit interval X to the nonempty, open,
convex subsets of a Banach space Y for which there exists no selection.

Indeed, let X be the closed unit interval [0, 1] and let

Y = ℓ1(X) = {y : X → ℝ
!!!!!!!
∑
x∈X

|y(x)| < +∞}.

Michael showed that the correspondence φ : X → 2Y given by φ(x) = {y ∈ Y | y(x) > 0} has open values, con-
sequently, images have an interior point but Michael proved that there does not exist a continuous selection.
The casewhere the correspondence is either finite-dimensional or closed valued still remains to be dealt with.
In order to provide an answer, we now state the main results of this paper.

2 A subset of a topological space is termed a Gδ subset if it is expressible as a countable intersection of open subsets.
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4 The results
We start by recalling that if X is a metric space, then it is both paracompact and perfectly normal. In many
applications, both paracompactness and perfect normality aspects are ensured by the metric character.
Therefore, throughout this section, we assume that (X, d) is a metric space. In addition, let (Y, ‖ ⋅ ‖) be a
Banach space. We recall that the relative interior of a convex set C is a convex set of same dimension and
that ri(C) = ri(C) and ri(C) = C. In the first instance, in order to prove the main result, we focus on the case of
constant (finite-)dimensional images. In addition, compared with Theorem 3.2 of Michael, we suppose first
that X is a metric space and omit the separability of Y. We denote by Di the set Di := {x ∈ X | dima φ(x) = i}.
Then we state the following theorem.

Theorem 4.1. Let φ : X → 2Y be an lsc correspondence with nonempty convex values. Then, for any i ∈ ℕ, the
restriction of ri(φ) to Di admits a continuous single-valued selection hi : Di → Y. In addition, if i > 0, then there
exists a continuous function βi : Di → ]0, +∞[ such that for any x ∈ Di, we have Bφ(x)(hi(x), βi(x)) ⊂ ri(φ(x)).

Once we have Theorem 4.1, we will be able to prove our main result given by

Theorem 4.2. Let X be a metric space and Y a Banach space. Let φ : X → 2Y be an lsc correspondence with
nonempty convex values. If for any x ∈ X, φ(x) is either finite-dimensional or closed, then φ admits a continuous
single-valued selection.

Note that the property of φ being either closed or finite-dimensional valued is not inherited by co(φ). Conse-
quently, we can not directly convert Theorem 4.2 in terms of the convex hull. Yet, first, a direct consequence
of both Theorem 4.2 and Theorem 3.1 is the following.

Corollary 4.3. Let X be a metric space and Y a Banach space. Let φ : X → 2Y be an lsc correspondence with
nonempty values. Then co(φ(x)) admits a continuous single-valued selection.

Secondly, we can also deduce from Theorem 4.2 the following result.

Corollary 4.4. Let X be a metric space and Y a Banach space. Let φ : X → 2Y be an lsc correspondence with
nonempty values. If for any x ∈ X, φ(x) is either finite-dimensional or closed convex, then co(φ) admits a con-
tinuous single-valued selection.

It is also worth noting that under the conditions of Theorem 4.2, we may have an lsc correspondence with
both closed and finite-dimensional values. This is made clear in the following example.

Example 4.5. Let Y be an infinite-dimensional Banach space and X = [0, 1]. Consider (e0, . . . , en , . . .) some
linearly independent normed family of Y. Let φ : ℝ → 2Y defined by

φ(x) =

{{{{{{{{{{
{{{{{{{{{{
{

{0} if x ∈ {0, 1},
ri(co(0, e0)) if x ∈ [12 , 1),
ri(co(0, e0, e1)) if x ∈ [13 ,

1
2 ),

...
Y if x ∈ Xc .

Remark that φ is lsc on ]0, 1[ since it is locally increasing. In other terms, for any x ∈ X, there exists Vx such
that for all x� ∈ Vx, we have φ(x) ⊂ φ(x�).

Besides, φ is lsc at the point x = 0. It suffices to remark that for ε > 0, we have φ−(B(0, ε)) = ℝ. Indeed,
since for any x ∈ ℝ, 0 ∈ φ(x), then B(0, ε) ∩ φ(x) ̸= 0. The same argument is used for x = 1. Therefore, we
conclude that φ is lsc.

By Theorem 4.2, we can conclude that φ admits a continuous selection. It should also be noted that we
can even build an explicit selection.
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Figure 1. Peeling concept.
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Figure 2. Graphic illustration.

The proofs of Theorem 4.1 and Theorem 4.2 are postponed until Sections 5 and 6 respectively. The proof of
Theorem 4.1 is based on the concept of “peeling” that we will introduce and motivate here.

Definition 4.6. Let C be a nonempty finite-dimensional subset of Y. We say that C� is a peeling of C of param-
eter ρ ≥ 0 if

C� = Γ(C, ρ) := {y ∈ C such that BC(y, ρ) ⊂ ri(C)}.

In order to gain some geometric intuition, the concept is illustrated by Figure 1.

Definition 4.7. Let η be a non-negative real-valued function defined on X, and φ a correspondence from X
to Y. We will say that the correspondence φη : X → 2Y is a peeling of φ of parameter η if for each x ∈ X, we
have φη(x) = Γ(φ(x), η(x)).

The motivation of the peeling concept is given by the next proposition (whose proof is postponed until the
next section) where we show that when the dimension is constant, continuous peeling of an lsc correspon-
dence is also a (possibly empty) lsc correspondence. This proposition is a key argument for the proof of The-
orem 4.1.

Proposition 4.8. Let φ : X → 2Y be an lsc correspondence with nonempty convex values. If there exists an
i ∈ ℕ∗ such that for any x ∈ X, dima φ(x) = i, then the continuity of the function η implies the lower semiconti-
nuity of φη.

Remark 1. The following simple example shows that the above proposition is no more valid if the dimen-
sion of φ is equal to zero. Let φ : ℝ → 2ℝ, defined by φ(x) = {0} and η(x) = |x|. Obviously φ is lsc and η is
continuous, but φη : ℝ → 2ℝ is not lsc since φη(0) = {0} while for x ̸= 0, we have φη(x) = 0.

Remark 2. Modifying slightly the previous example, we also show that the above proposition does not hold
true if the dimension of φ is not constant. Let us consider the case where X = ℝ, Y = ℝ2, and φ : X → 2Y , is
the lsc correspondence defined by

φ(x) = {(y1, y2) ∈ ℝ2 | y1 ≥ 0 and y2 ≥ tan(2 arctan(|x|))y1}, if x ̸= 0 and φ(0) = [0, 1/2] × {0}.

Using the same η(x) = |x|, we obtain that when x ̸= 0, φη(x) is a translation of φ(x). More precisely,

φη(x) = {(1, |x|)} + φ(x)

(see Figure 2). In particular, d(φ(0), φη(x)) ≥ 1/2, which allows us to conclude that φη is not lsc.

5 Proof of Theorem 4.1
In Section 5.1, we first present elementary results about the “peeling” of a set. Section 5.2 is dedicated to
prove some affine geometry results used to prove Proposition 4.8 in Section 5.3. Finally, we deduce Theo-
rem 4.1 from this proposition in the last subsection.
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5.1 Elementary results on a set “peeling”

In this subsection, C is a finite-dimensional set.

Definition 5.1. We define³ the internal radius of a finite-dimensional set C by

α(C) := sup{ρ ∈ ℝ+ | there exists y ∈ C such that BC(y, ρ) ⊂ ri(C)}.

Lemma 5.2. Let C be a nonempty convex set. Then one has Γ(C, 0) = ri(C). Yet, if α(C) is finite, then we have
Γ(C, α(C)) = 0.

Proof. The equality on Γ(C, 0) is a simple consequence of the definition. Let us prove by contradiction that
Γ(C, α(C)) = 0. Indeed, if y ∈ Γ(C, α(C)), we have BC(y, α(C)) ⊂ ri(C). By a compactness argument on the circle
of center y and radius α(C) and the openness of ri(C) in aff(C), we can prove the existence of some ε > 0 such
that BC(y, α(C) + ε) ⊂ ri(C).

We first establish that a peeling of a convex set remains convex. In addition, we can characterize the
nonemptiness.

Lemma 5.3. Let C be a nonempty convex set and ρ ∈ [0, +∞[. Then, the set Γ(C, ρ) is convex. In addition, the
set Γ(C, ρ) is nonempty if and only if ρ < α(C).

Proof. First, we have that Γ(C, ρ) is convex. Let x1, x2 ∈ Γ(C, ρ) and λ ∈ [0, 1]. We claim that

BC((λx1 + (1 − λ)x2), ρ) ⊂ ri(C).

By triangle inequality, it is easy to see that

B(λx1 + (1 − λ)x2, ρ) = λB(x1, ρ) + (1 − λ)B(x2, ρ).

Yet, since ri(C) is convex, then we have

(λB(x1, ρ) + (1 − λ)B(x2, ρ)) ∩ aff(C) ⊂ λ ri(C) + (1 − λ) ri(C) = ri(C),

which establishes the result. Now, remark that if Γ(C, ρ) ̸= 0, then by definition of Γ, we have ρ ≤ α(C) and in
view of Lemma 5.2, ρ < α(C). It remains to prove the converse. Using the definition of α, there exists yρ ∈ C
such that BC(yρ , ρ) ⊂ ri(C). Therefore, yρ ∈ Γ(C, ρ).

Lemma 5.4. Let C be a convex set and ρ1, ρ2 non-negative real numbers such that ρ1 < ρ2. Then we have
Γ(C, ρ2) ⊂ Γ(C, ρ1) ⊂ ri(C).

Proof. Let y ∈ Γ(C, ρ2). Since ε = ρ2 − ρ1 > 0, there exists y ∈ Γ(C, ρ2) ∩ B(y, ε). Consequently, by trian-
gle inequality, BC(y, ρ1) ⊂ BC(y, ρ2), and therefore y ∈ Γ(C, ρ1). Finally, it comes from the definition that
Γ(C, ρ1) ⊂ ri(C).

5.2 Affine geometry

Next, we will use known results about linear independence in order to raise a series of results about affine
independence and barycentric coordinates.

Lemma 5.5. The set Y i+1ai is an open subset of Y i+1.

Proof. Let (z0, . . . , zi) ∈ Y i+1ai . In order to get a contradiction, we suppose that for all r > 0, and for all
k ∈ {0, . . . , i}, there exists a z�k ∈ B(zk , r) such that (z�0, . . . , z

�
i ) are affinely dependent. In particular, for

3 Note that α may value +∞. The proofs need to distinguish whether α is finite or infinite. Such a difficulty can be avoided by
considering on Y the metric given by δ(x, y) = min(1, ‖x − y‖).
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all p ∈ ℕ∗ and for all k ∈ {0, . . . , i}, there exists z�k,p ∈ B(zk , 1/p) such that (z�0,p , . . . , z
�
i,p) are affinely de-

pendent. Thus, the family of vectors

(vp1 , . . . , v
p
i ) = (z�1,p − z

�
0,p , . . . , z

�
i,p − z

�
0,p)

is linearly dependent. Hence, there exists a λp = (λp1 , . . . , λ
p
i ) ∈ ℝ

i \ {0} such that∑i
k=1 λ

p
k v
p
k = 0. We can nor-

malize by letting μp = λp/‖λp‖ ∈ Si−1(0, 1). By a compactness argument, the sequence μp admits a conver-
gent subsequence μφ(p) to μ ∈ Si−1(0, 1). Since for all k ∈ {0, . . . , i}, there exists a z�k,p ∈ B(zk , 1/p), then the
sequence (z�k,p)p∈ℕ∗ converges to zk. Therefore, we have

i
∑
k=1

μφ(p)vφ(p)k =
i
∑
k=1

(λφ(p)k /‖λφ(p)‖)vφ(p)k = 0 →
i
∑
k=1

μk(zk − z0).

That is,∑i
k=1 μk(zk − z0) = 0. Since, by the starting assumption, (z1 − z0, . . . , zi − z0) is linearly independent,

then we obtain μ = 0, which is absurd.

We recall that if yn = (yn0 , . . . , y
n
i ) ∈ Y

i+1
ai , then every point zn of aff(y

n) has a unique representation

zn =
i
∑
k=0

λnky
n
k , λn = (λn0 , . . . , λ

n
i ) ∈ ℝ

i+1,
i
∑
k=0

λnk = 1,

where λn0 , . . . , λ
n
i are the barycentric coordinates of the point z

n relative to (yn0 , . . . , y
n
i ). Using the previous

notations and adopting obvious ones for the limits, our next result is formulated in the following way, where
the assumption y ∈ Y i+1ai can not be omitted.

Lemma 5.6. Let yn ∈ Y i+1ai tending to y ∈ Y i+1ai . Let z
n ∈ aff(yn). Hence, we have:

(1) If zn is bounded, then λn is bounded and zn has a cluster point in aff(y).
(2) If zn converges to z, then λn converges to λ.

Proof. We start by proving assertion (1). We denote by wn = zn − yn0. Since ∑i
k=0 λ

n
k = 1, it follows that

wn = ∑i
k=0 λ

n
k (y

n
k − y

n
0). Hence, wn = ∑i

k=1 λ
n
k (y

n
k − y

n
0). We denote by λ̃n = (λn1 , . . . , λ

n
i ) ∈ ℝ

i, where the first
component is omitted. First, we will prove by contradiction that λ̃n is bounded. Assume the contrary. Then
there exists a subsequence λ̃ψ(n) of λ̃n such that ‖λ̃ψ(n)‖ diverges to infinity. Since zn is bounded, it follows
that wψ(n)/‖λ̃ψ(n)‖ → 0. Moreover, by normalizing, the sequence μψ(n) = λ̃ψ(n)/‖λ̃ψ(n)‖ belongs to the compact
set Si−1(0, 1). Therefore, the sequence μψ(n) admits a convergent subsequence μψ(φ(n)) converging to μ in
Si−1(0, 1). Thus, we obtain that

wψ(φ(n))

‖λ̃ψ(φ(n))‖
→

i
∑
k=1

μk(yk − y0).

By uniqueness of the limit, we deduce that∑i
k=1 μk(yk − y0) = 0. Since (y1 − y0, . . . , yi − y0) is independent,

we obtain μ = 0, which is impossible. Now it suffices to remark that since λn0 = 1 − ∑i
k=1 λ

n
k , the boundedness

of λ̃n implies the one of λn0 and therefore of the whole vector λn.
It remains to check that zn has a cluster point.We have already established that λn is bounded. Therefore,

there admits a convergent subsequence λψ(n) converging to λ. Hence,

zψ(n) =
i
∑
k=0

λψ(n)k yψ(n)k → z =
i
∑
k=0

λkyk .

That is, z is a cluster point of zn. Moreover, observe that since ∑i
k=0 λ

ψ(n)
k = 1 converges to ∑i

k=0 λk, we have
z ∈ aff(y), which establishes the result.

Now, we are able to prove the second assertion. By assertion (1), we know that λn is bounded. By [1],
in order to prove that λn converges to λ, we claim that the bounded sequence λn has a unique cluster point.
Using the same notations, let a ∈ F, where F is the set of cluster points of λn. Then there exists a subsequence
λφ(n) of λn such that λφ(n) → a. Consequently,

wφ(n) =
i
∑
k=1

λφ(n)k (yφ(n)k − yφ(n)0 ) →
i
∑
k=1

ak(yk − y0).
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Alternatively, we have that wφ(n) = zφ(n) − yφ(n)0 converges to

z − y0 =
i
∑
k=0

λkyk − y0 =
i
∑
k=1

λk(yk − y0),

since∑i
k=0 λk = 1. By uniqueness of the limit and given that (y1 − y0, . . . , yi − y0) is independent, we obtain

that ak = λk, for all k ∈ {1, . . . , i}. Therefore, we have a unique cluster point. Consequently, λnk → λk, for all
k ∈ {1, . . . , i}. In addition, for the first component, we obtain λn0 = 1 − ∑n

k=1 λ
n
k → 1 − ∑n

k=1 λk = λ0. Thus, for
all k ∈ {0, . . . , i}, we have λnk → λk. This completes the proof.

5.3 Proof of Proposition 4.8

The key argumentwewill use is based on the following lemma. Note that Tan andYuan [11] have a similar but
weaker result, since they only treated the case of a finite-dimensional set Y when the images have a nonempty
interior which avoids to introduce the relative interior.

Lemma 5.7 (Fundamental Lemma). Under the assumptions of Theorem4.1, let x ∈ Di, γ > 0and y ∈ Γ(φ(x), γ).
Then, for any ε ∈ ]0, γ[, there exists a neighborhood V of x such that for every x ∈ V ∩ Di, we have that
Γ(φ(x), γ − ε) ∩ B(y, ε) ̸= 0.

Proof. First, let us fix some ε ∈ ]0, γ[. In order to simplify the notations, wewill assumewithin this proof that
X = Di. We will start by proving the following claim:

Claim 1. There exists a neighborhood V1 of x, such that for all x ∈ V1, we have Bφ(x)(y, γ − ε/3) ⊂ φ(x).

To prove the claim, let us denote by r the positive quantity r = γ − ε/3. In order to get a contradiction, assume
that for all n > 0, there exists an xn ∈ B(x, 1/n), and there exists a zn ∈ Bφ(xn)(y, r) such that zn ∉ φ(xn). Since
for all x ∈ X, we have dima φ(x) = i, there exists (ŷ0, . . . , ŷi) ∈ Y i+1ai ∩ φ(x). Moreover, we have xn → x and φ
is lsc. Therefore, for n sufficiently large, there exists ynk → ŷk such that ynk ∈ φ(xn), for all k ∈ {0, . . . , i}. Using
Lemma 5.5, for n large enough, we obtain that dima (yn0 , . . . , y

n
i ) = i.

Besides, we have zn ∈ aff(φ(xn)) = aff(yn0 , . . . , y
n
i ). Since zn ∈ B(y, r), applying the first assertion of

Lemma 5.6, we conclude that zn has a cluster point z in aff(φ(x)) = aff(ŷ0, . . . , ŷi). Furthermore, since
zn ∈ B(y, r), we have z ∈ B(y, r) ⊂ B(y, γ). It follows that z belongs to ri(Bφ(x)(y, γ)).

Hence, in view of the dimension of Bφ(x)(y, γ), there exists an i-simplex Si = co(U0, . . . , U i) contained in
Bφ(x)(y, γ) such that z ∈ ri(Si). We can write the affine decomposition z = ∑i

k=0 μkUk, for some μ ∈ ℝi+1 such
that∑i

k=0 μk = 1and μk > 0. Inparticular, in viewof the assumptionof the lemma,Uk ⊂ Bφ(x)(y, γ) ⊂ ri(φ(x)).
Using again that xn → x and the lower semicontinuity of φ, we obtain that there exists a sequence Unk → Uk
such that Unk ∈ φ(xn), for all k ∈ {0, . . . , i} and n large enough. Then we consider μn = (μn0 , . . . , μ

n
i ), the

affine coordinates of zn in (Un0 , . . . , U
n
i ). Since z

n has a cluster point z, there exists a subsequence zψ(n) of zn

converging to z. By assertion (2) of Lemma 5.6, we have μψ(n)k → μk, for all k ∈ {0, . . . , i}. However, μk > 0,
then μψ(n)k ≥ 0, for n large enough. Consequently, zψ(n) is a convex combination of Uψ(n)k . By the convexity of
φ(xψ(n)), we conclude that zψ(n) ∈ φ(xψ(n)), which is a contradiction. This proves Claim 1.

Note that an obvious consequence of Claim 1 is that for all x ∈ V1, we have

Bφ(x)(y, γ −
2ε
3 ) ⊂ ri(φ(x)).

Now, since ε > 0, we have y ∈ φ(x) ∩ B(y, ε/3). From the lower semicontinuity of φ, there exists a neigh-
borhood V2 of x, such that for all x ∈ V2, we have the existence of some y ∈ φ(x) ∩ B(y, ε/3). Therefore, for
any x ∈ V = V1 ∩ V2, we have

Bφ(x)(y, γ − ε) ⊂ Bφ(x)(y, γ −
2ε
3 ) ⊂ ri(φ(x)).

Thus, we finish the proof.

Note that Proposition 4.8 was already stated without proof in Section 4. We are now ready to prove it.
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Proof of Proposition 4.8. Let us consider an open setO and x ∈ φ−(O). Thismeans thatφη(x) ∩ O is nonempty
and contains some y. Since O is an open set containing y, we can first remark that there exists r > 0 such that
B(y, r) ⊂ O.

On one hand, by the condition on η, letting γ = α(x)−η(x)
3 > 0 and ηi = η(x) + iγ, for any i = {0, . . . , 3}, we

have
η(x) = η0 < η1 < η2 < η3 = α(x).

By the definition of α, there exists z ∈ Γ(φ(x), η2). Applying the Fundamental Lemma, we obtain that there
exists a neighborhood V1 of x such that for any x ∈ V1, there exists z ∈ Γ(φ(x), η1) ∩ B(z, γ).

On the other hand,wewill distinguish two cases dependingwhether at a point x, there is or is not a signif-
icant peeling. Let us denote byM = 1 + 2

γ (‖y − z‖ + γ); we will consider the positive number ε = min(r/M, γ).

First case: η(x) > 0. Let us denote ε = min(ε, η(x)/2). Since y ∈ φη(x) = Γ(φ(x), η(x)), then once again, by
the Fundamental Lemma, we have the existence of a neighborhood V2 of x such that for any x ∈ V2, there
exists y ∈ Γ(φ(x), η(x) − ε) ∩ B(y, ε). Now, let us consider λ = 2ε

γ+ε ∈ ]0, 1] and yλ = (1 − λ)y + λz.

Second case: η(x) = 0. In this case, φη(x) = ri(φ(x)). Let ε = ε. Since φ is lsc, there exists a neighborhood V2
of x such that for any x ∈ V2, there exists y ∈ φ(x) ∩ B(y, ε) satisfying

Bφ(x)(y, 0) ⊂ ri(φ(x)).

Now, let us consider λ = ε
γ ∈ ]0, 1] and yλ = (1 − λ)y + λz.

In both cases, since the set φ(x) is convex, in view of our choice of λ, by a simple computation, we can
prove that if x ∈ V1 ∩ V2, then yλ ∈ Γ(φ(x), η(x) + ε).

Note that in both cases λ ≤ 2ε/γ. The following computationwill show that our choice of ε implies yλ ∈ O:

‖yλ − y‖ ≤ (1 − λ)‖y − y‖ + λ‖z − y‖
≤ ‖y − y‖ + λ(‖z − z‖ + ‖z − y‖)

≤ ε + 2ε
γ
(‖z − z‖ + ‖z − y‖)

≤ ε + 2ε
γ
(γ + ‖y − z‖) = εM ≤ r.

Finally, by the continuity of η, there exists a neighborhood V3 of x such that for any x ∈ V3, we have
η(x) − ε < η(x) < η(x) + ε. Summarizing the previous results, for all x ∈ V1 ∩ V2 ∩ V3, there exists yλ ∈ O
such thatBφ(x)(yλ , η(x)) ⊂ Bφ(x)(yλ , η(x) + ε) ⊂ ri(φ(x)),whichmeans that yλ ∈ φη(x) ∩ O andestablishes the
result.

5.4 Proof of Theorem 4.1

Using the above lemma 5.7, we are able to prove the following result on the regularity of the internal radius
of an lsc correspondence.

Lemma 5.8. Let us consider φ : X → 2Y such that there exists some positive integer i such that for all x ∈ X,
dima φ(x) = i. Then α ∘ φ : X → ℝ+ ∩ {+∞} is a lower semicontinuous function.

Proof. Let us first recall that

α(φ(x)) := sup{ρ ∈ ℝ+ | there exists y ∈ φ(x) such that Bφ(x)(y, ρ) ⊂ ri(φ(x))}.

Let us fix x in X, and ρ < α(φ(x)). We can consider γ such that ρ < γ < α(φ(x)). By the definition of α, there
exists y ∈ Γ(φ(x), γ). Now, by the Fundamental Lemma, there exists a neighborhood V of x such that for
all x ∈ V, Γ(φ(x), ρ) ̸= 0. Using Lemma 5.3, we obtain that for all x in V, α(φ(x)) > ρ, which establishes the
result.

An immediate consequence is the following result.

Corollary 5.9. For all positive integers i, there exists ηi : Di → ℝ+ continuous such that 0 < ηi(x) < α(φ(x)).



206 | P. Gourdel and N. Mâagli, A convex-valued selection theorem

Proof. Since on Di, α ∘ φ is a lower semicontinuous function, the correspondence given by

Λ : Di → 2ℝ, x Ü→ ]0, α(φ(x))[

is lsc. Applying Michael’s Selection Theorem 3.2, we deduce that there exists a single-valued continuous
selection ηi of Λ.

Proof of Theorem 4.1. If i = 0, then φ is reduced to a singleton on D0. Moreover, on D0, the correspondences
φ and ri(φ) coincide. Therefore, there exists a mapping h0 : D0 → Y such that for all x ∈ D0, φ(x) = {h0(x)}.
Since φ is lsc on D0, it is well known that h0 is a continuous function.

If i > 0, let us first apply Corollary 5.9 in order to get a continuous function ηi. Consequently, by Proposi-
tion 4.8,wehave for any i ∈ ℕ∗, thatφηi is lsc onDi. By a classical result, this implies thatφηi is also lsc onDi.
Moreover, in view of the double inequality satisfied by ηi, we can apply Lemma5.3, in order to state thatφηi is
a correspondence with nonempty convex-closed values. Therefore, applying Theorem 3.1 of Michael gives a
continuous single-valued selection hi of φηi . That is for any x ∈ Di, hi(x) ∈ Γ(φ(x), ηi(x)). Since ηi(x) > 0, we
can apply Lemma 5.4 in order to show that hi(x) ∈ Γ(φ(x), ηi(x)/2). Now, for all x ∈ Di, let βi(x) := ηi(x)/2;
then the previous condition can be rewritten as Bφ(x)(hi(x), βi(x)) ⊂ ri(φ(x)), which proves the result.

It is worth noting that the idea of peeling should be distinguished from the approximationmethod introduced
by Cellina [2]. Indeed, mainly Cellina’s method consists of approximating an upper semicontinuous corre-
spondence φ by a lower semicontinuous one.⁴ In addition, unlike the peeling concept which can be seen as
an “inside approximation” (the approximated set is a subset of the original one), the approximation of Cellina
is an “outside one” ( the original set is a subset of the approximated one). As it is well known (see [2]), apply-
ing selection theorems to Cellina approximations is used to deduce Kakutani’s fixed point theorem.

We are now ready to prove the main result of this paper.

6 Proof of Theorem 4.2

6.1 Notations and preliminaries

We denote
(i) by D∞ = {x ∈ X | φ(x) has infinite dimension},
(ii) by D≤i = D0 ∪ D1 ∪ ⋅ ⋅ ⋅ ∪ Di,
(iii) by D≥i = (Di ∪ Di+1 ∪ ⋅ ⋅ ⋅ ) ∪ D∞.
As in the previous section, we begin by listing a series of parallel results which will be used in order to prove
Theorem 4.2. The first one is a classical result (see for example [4]).

Lemma 6.1. Let C be a convex set such that ri(C) is nonempty. Then, for any α such that 0 < α < 1, we have
(1 − α)A + α ri(A) ⊂ ri(A).

Lemma 6.2. The set D≥i is an open subset of X.

Proof. Let x ∈ D≥i. Then there exists j ≥ i such that x ∈ Dj. Therefore, since dima φ(x) = j, then we have
Y j+1ai ∩ aff(φj+1(x)) ̸= 0 where φj+1(x) is the cartesian product φj+1(x) = φ(x) × ⋅ ⋅ ⋅ × φ(x). Since the lower
semicontinuity of φ implies that φj+1 is also lsc, in view of the openness of Y j+1ai , there exists a neighborhood
Vx of x such that for any x� ∈ Vx, Y

j+1
ai ∩ aff(φj+1(x�)) ̸= 0. This implies that dima φ(x�) ≥ j. That is, Vx ⊂ D≥j.

Yet, since D≥j ⊂ D≥i, we finish the proof.

Lemma 6.3. The set D≤(i−1) is closed in D≤i.

4 The approximation is given by φε(x) = co(⋃z∈(B(x,ε)∩X) φ(z)).
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Proof. In view of the partition D≤i = D≤i−1 ∪ Di, in order to prove the result, it suffices to prove that Di is
an open set in D≤i. Using the previous remark, we already know that D≥i is an open set of X. Yet, since
Di = D≥i ∩ D≤i, the result is established.

Lemma 6.4. Let X and Y be two topological spaces and F a closed subset of X. Suppose that φ : X → 2Y is an
lsc correspondence and f : F → Y is a continuous single-valued selection of φ|F . Then, the correspondence ψ
given by

ψ(x) =
{
{
{

{f(x)} if x ∈ F,
φ(x) if x ∉ F,

is also lsc.

Proof. Let V be a closed subset of Y. We have

ψ+(V) = {x ∈ F | ψ(x) ⊂ V} ∪ {x ∈ X \ F | ψ(x) ⊂ V} = {x ∈ F | f(x) ∈ V} ∪ {x ∈ X \ F | φ(x) ⊂ V}.

Since f is a selection of φ|F, we deduce that

{x ∈ X | φ(x) ⊂ V} = {x ∈ X \ F | φ(x) ⊂ V} ∪ {x ∈ F | φ(x) ⊂ V}
= {x ∈ X \ F | φ(x) ⊂ V} ∪ {x ∈ F | f(x) ∈ φ(x) ⊂ V}.

Therefore,
ψ+(V) = {x ∈ F | f(x) ∈ V} ∪ {x ∈ X | φ(x) ⊂ V} = f−1(V) ∪ φ+(V).

Since φ is lsc, the set φ+(V) is closed. Moreover, since V is a closed subset of Y and f is continuous, it follows
that f−1(V) is a closed subset of F. Now, since F is closed in X, the set f−1(V) is closed in X. Hence, ψ+(V) is
closed, as required.

6.2 Proof of Theorem 4.2

The proof of Theorem 4.2 is outlined in three steps as follows:
(Step 1) For any k ∈ ℕ, we have that ri(φ) admits a continuous selection h≤k on D≤k.
(Step 2) For any k ∈ ℕ, there exists jk : X → Y such that

∙ jk is a continuous selection of φ on X.
∙ jk is a continuous selection of ri(φ) on D≤k.

(Step 3) There exists a continuous selection f of φ on X.

Proof of Step 1. Let us apply for any k ∈ ℕ, Theorem 4.1 in order to get the existence of a continuous single-
valued function hk defined on Dk such that for all x ∈ Dk, hk(x) ∈ ri(φk(x)). Let Pn be the following heredity
property: the restriction of ri(φ) to D≤n admits a continuous selection h≤n.

For n = 0, it suffices to notice that D≤0 = D0. Therefore, we can let h≤0 := h0 which is a continuous selec-
tion of ri(φ). Thus, P0 is true.

Let n ≥ 1. Suppose that Pn−1 holds true and let us prove that Pn is true. By the heredity hypothesis, we
have that ri(φ) admits a continuous selection h≤(n−1) on D≤(n−1). We will introduce an auxiliary mapping φ̃n
defined on D≤n, which is lsc and such that the graph is contained in the graph of φ, by taking

φ̃n : D≤n → 2Y defined by φ̃n(x) =
{
{
{

{h≤(n−1)(x)} if x ∈ D≤n−1,
φ(x) if x ∈ Dn .

By Lemma 6.3 and Lemma 6.4, we conclude that φ̃n is lsc. Moreover, φ̃n has closed-convex values. By
Michael’s selectionTheorem3.1, there exists gn continuous such that gn(x) ∈ φ̃n(x) ⊂ φ(x), for every x ∈ D≤n.
In the following, we will construct a continuous single-valued selection h≤n of ri(φ) on D≤n. We consider the
continuous application λ : Dn → ]0, 1[ given by

λ(x) = min(d(x, D≤n−1), 1)
2 + ‖hn(x)‖

.
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Then we define h≤n : D≤n → Y given by

h≤n(x) =
{
{
{

gn(x) if x ∈ D≤n−1,
(1 − λ(x))gn(x) + λ(x)hn(x) if x ∈ Dn .

Using the heredity property, we know that h≤(n−1) is a selection of ri(φ) on D≤(n−1). On the other hand, on
Dn, the function h≤n is a strict convex combination of gn ∈ φ and hn ∈ ri(φ), thus by Lemma 6.1, h≤n ∈ ri(φ).
Therefore, we conclude that h≤n is a selection of ri(φ) on D≤n. It remains to check the continuity of h≤n. It is
clear that the restriction of h≤n on Dn (respectively on D≤n−1) is continuous. Since Dn is open in D≤n, it suffices
to consider the case of a sequence xk ∈ Dn such that xk → x ∈ D≤n−1. It is obvious that since d(xk , D≤n−1) tends
to zero, λ(xk) tends to zerowhen xk tends to x. Besides, we have that ‖hn(x)‖/(2 + ‖hn(x)‖) is bounded. That is,
λ(xk)hn(xk) tends to zero when xk tends to x. Therefore, combining the previous remarks and the continuity
of gn allows us to conclude that h≤n(xk) tends to gn(x) = h≤n(x), which establishes the result.

Proof of Step 2. Using Lemma 6.2, we have already proved that D≥i is an open set of X. Consequently, D≤i−1
is closed in X. Using again Lemma 6.3, we can define an lsc function Tk : X → 2Y given by

Tk(x) =
{
{
{

{h≤k(x)} if x ∈ D≤k ,
φ(x) if x ∈ D≥k+1.

By Michael’s Selection Theorem 3.1, there exists jk continuous such that for all x ∈ X, jk(x) ∈ Tk(x) ⊂ φ(x).
That is, jk is a selection of φ. On the other hand, for any x ∈ D≤k, we have jk(x) ∈ Tk(x) = {h≤k(x)}, which
finishes the proof of Step 2.

Proof of Step 3. Wecanwrite X as a partition between X1 andD∞, where X1 = ⋃k∈ℕ Dk. Under the hypothesis
of Theorem 4.2, we have that D∞ is a subset of X2, where X2 = {x ∈ X | φ(x) has closed values}.

Now, in the spirit of Michael’s proof, for any k ∈ ℕ∗, we define

f k(x) = λk(x)jk(x) + (1 − λk(x))j0(x), where λk(x) =
1

max(1, ‖jk(x) − j0(x)‖)
.

It is easy to check in view of Lemma 6.1 that for each k ∈ ℕ∗, f k is also a selection of φ on X satisfying
for any x ∈ D≤k, f k(x) ∈ ri(φ(x)). In addition, we have that f k(x) is bounded since f k(x) can be written as
f k(x) = j0(x) + λk(x)(jk(x) − j0(x)) and our choice of λk(x) ensures that ‖f k(x)‖ ≤ ‖j0(x)‖ + 1.

We can now define for any k ∈ ℕ∗,

f̃ n(x) =
n
∑
k=1

1
2k
f k(x), f(x) = ∑

k∈ℕ∗

1
2k
f k(x).

First, we claim that f is continuous at any x ∈ X. As a consequence of the continuity of j0, the set

Wx = {x ∈ X | ‖j0(x)‖ ≤ ‖j0(x)‖ + 1}

is an open neighborhood of x. Indeed, each f k is continuous and the series f̃ n converges uniformly to f onWx,
since

‖f(x) − f̃ n(x)‖ ≤
∞

∑
k=n+1

1
2k

‖f k(x)‖ ≤ (‖j0(x)‖ + 2)
∞

∑
k=n+1

1
2k
.

Moreover, we have f(x) ∈ φ(x) for any x ∈ X, since f is an “infinite convex combination”⁵ of elements of φ(x).

5 We recall that if C is a convex subset of Y, then for any bounded sequence (ck)k∈ℕ ∈ C and for any sequence of non-negative
real numbers (λk)∈ℕ with∑k∈ℕ λk = 1, the series∑∈ℕ λkck converges to an element of C.
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Now, we claim that for all x ∈ X, f(x) is an element of φ(x). We have to distinguish three cases.
∙ If x ∈ D0, then f(x) = j0(x) since φ(x) is a singleton.
∙ If x ∈ X1 \ D0, then there exists k0(x) > 0 such that x ∈ Dk0(x) ⊂ D≤k0(x). Let us remark that f(x) can be

written as
f(x) = μf k0(x)(x) + (1 − μ) ∑

k ̸=k0(x)

f k(x)
2k(1 − μ)

,

where μ = 1
2k0(x) . Using once again Footnote 5, we easily check that∑k ̸=k0(x)

f k(x)
2k(1−μ) belongs to φ(x). There-

fore, by Lemma 6.1, f(x) is an interior point of φ(x), then a selection of φ, which finishes the proof.
∙ If x ∈ D∞, then x ∈ X2. That is, φ(x) = φ(x). Since we have already established that f(x) ∈ φ(x) for all

x ∈ X, the result is immediate.
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