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1 Introduction

The area of continuous selections is closely associated with the publication by Ernest Michael of two fun-
damental papers [10]. It is important to notice that the axiom of choice ensures the existence of a selection
for any nonempty family of subsets of X (see [9]). Yet, the axiom of choice does not guarantee the continu-
ity of the selection. Michael’s studies are more concerned about continuous selections for correspondences
@ : X — 2Y. He guarantees the continuity under specific structures on X (paracompact spaces, perfectly nor-
mal spaces, collectionwise normal spaces, etc.) and on Y (Banach spaces, separable Banach spaces, Fréchet
spaces, etc.) [5]. Without any doubt, the most known selection theorems are: closed-convex valued, compact-
valued, zero-dimensional and finite-dimensional theorems [6-8].

The closed-convex valued theorem is considered as one of the most famous of Michael’s contributions
in the continuous selection theory for correspondences. This theorem gives sufficient conditions for the exis-
tence of a continuous selection with the paracompact domain: paracompactness of the domain is a necessary
condition for the existence of continuous selections of lower semicontinuous correspondences into Banach
spaces with convex closed values [9].

However, despite their importance, all the theorems mentioned above were obtained for closed-valued
correspondences. One of the selection theorems obtained by Michael in order to relax the closeness restric-
tion is the convex-valued selection theorem [6, Theorem 3.1”’]. The result was obtained by an alternative
assumption on X (Perfect normality), a separability assumption on Y and an additional assumption involving
three alternative conditions on the images. Besides, Michael shows that when Y = R, then perfect normal-
ity is a necessary and sufficient condition in order to get a continuous selection of any convex-valued lower
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semicontinuous correspondence. The proof of the convex-valued selection theorem is based on the existence
of a dense family of selections. The technique is quite involved and exploits the characterization of perfect
normality of X and separability of Y.

An interesting question is the following: is it possible to relax the separability of Y? To answer this ques-
tion, Michael provided in his paper a counterexample [6, Example 6.3] showing that the separability of Y can
not be omitted. Even though, the correspondence satisfies one of the three conditions, Michael established an
overall conclusion. One question arises naturally: is it possible to omit the separability of ¥ when the images
satisfy one of the two remaining conditions? This study aims to prove that the answer is affirmative.

The paper is organized as follows: in Section 2, we begin with some definitions and results which will
be very useful in the sequel. Section 3 is dedicated to recall the two Michael’s selection theorems that will
be used later: the closed-convex valued and the convex-valued theorems. In Section 4, we first state a partial
result when the dimension of the images is finite and constant. Then, we introduce and motivate the concept
of peeling. Finally, we state the general case and Sections 5 and 6 provide the proofs of our results.

2 Preliminaries and notations

We start by introducing some notations which will be useful throughout this paper.

2.1 Notations

Let Y be a normed space and C ¢ Y. We shall denote

(i by C the closure of Cin Y,

(i) by co(C) the convex hull of C and by aff(C) the affine space of C,

(iii) by dim4(C) = dim aff(C) the dimension of C which is by definition the dimension of aff(C),
(iv) if C is finite-dimensional?, then ri(C) the relative interior of C in aff(C) is given by

ri(C) = {x € C | there exists a neighborhood V of x such that V, naff(C) c C},

(v) by Bc(a,r) := B(a, r) naff(C), where B(a, r) is the open ball of radius r > O centered at a point a € X
and Be(a, 1) := B(a, r) n aff(C), where B(a, r) is the closed ball of radius r > O centered at a point a € X,
(vi) bySi—1(0,1) :={x = (x1,...,x;) € Rl | |x] = 1} the unit (i — 1)-sphere of R embedded with the euclid-
ean norm,
(vii) by (Yf;i )pen the set of affinely independent families of (Y?)yen.
We recall that if {x°, x', ..., xi} is a set of i + 1 affinely independent points of Y. We call an i-simplex the
convex hull of {x°, x, ..., x!} given by

i i
Si:{zeY Z:Zakx", ax >0, Zakzl}:co(xo,...,xl).

k=0 k=0

2.2 Classical definitions

We go on with formal definitions and related terms of correspondences. Let us consider nonempty topological
spaces X and Y.

Definition 2.1. Let¢p : X — 2Y be a correspondence, B ¢ Y. We define by

e"B)={xeX|p(x)cB}, ¢ (B)={xeX|px)nB+0}.

1 The space C is said to be finite-dimensional if C is contained in a finite-dimensional subspace of Y.
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Definition 2.2. Let¢ : X — 2Y beany correspondence. A correspondence i : X — 2Y satisfying (x) ¢ ¢(x),
for each x € X, is called a selection of ¢. In particular, if 1 is single-valued (associated to some function
f:X — Y), then f is a single-valued selection when f(x) € ¢(x), for each x € X.

We recall some alternative characteristics of lower semicontinuous correspondences.

Definition 2.3 ([3]). Let¢ : X — 2Y bea correspondence. We say that ¢ is lower semicontinuous (abbreviated
to Isc) if one of the equivalent conditions is satisfied.

(i) Forall open sets V ¢ Y, we have that ¢~ (V) is open.

(ii) For all closed sets V ¢ Y, we have that ¢*(V) is closed.

In the case of metric spaces, an alternative characterization is given by the following proposition.

Proposition 2.4 ([3]). Let X and Y be metric spaces and ¢ : X — 2¥ a correspondence. We have that ¢ is Isc
on X if and only if for all x € X, for all convergent sequences (xp)nen to x, and for all y € ¢(x), there exists a
sequence (Yn)nzn, in Y such that y, — y and for all n > no, we have y, € ¢(xy).

3 Michael’s selection theorems (1956)

Let us first recall one of the main selection theorems: the closed-convex valued selection theorem.

Theorem 3.1 (Closed-convex valued selection theorem). Let X be a paracompact space, Y a Banach space
and ¢ : X — 2" anlsc correspondence with nonempty closed convex values. Then ¢ admits a continuous single-
valued selection.

Before stating the next theorem, we recall? that a topological space is perfectly normal if it is normal and
every closed subset is a G-delta subset (Gs).

The following Michael selection theorem dedicated for non-closed valued correspondences is much more
difficult to prove. The assumption on Y is reinforced by adding the separability. We recall that perfect nor-
mality does neither imply paracompactness nor the converse.

Theorem 3.2 (Convex-valued selection theorem). Let X be a perfectly normal space, Y a separable Banach
space and ¢ : X — Y an Isc correspondence with nonempty convex values. If for any x € X, ¢(x) is either
finite-dimensional, or closed, or has an interior point, then ¢ admits a continuous single-valued selection.

Note that as explained before, in his paper [6, Example 6.3], Michael provided the following counterexample
showing that the assumption of separability of Y can not be omitted in Theorem 3.2.

Example 3.3. There exists an Isc correspondence ¢ from the closed unit interval X to the nonempty, open,
convex subsets of a Banach space Y for which there exists no selection.

Indeed, let X be the closed unit interval [0, 1] and let

v-em={y:x-R

Y Iyl < +oo}.

xeX

Michael showed that the correspondence ¢ : X — 2Y given by ¢(x) = {y € Y| y(x) > 0} has open values, con-
sequently, images have an interior point but Michael proved that there does not exist a continuous selection.
The case where the correspondence is either finite-dimensional or closed valued still remains to be dealt with.
In order to provide an answer, we now state the main results of this paper.

2 A subset of a topological space is termed a G4 subset if it is expressible as a countable intersection of open subsets.
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4 The results

We start by recalling that if X is a metric space, then it is both paracompact and perfectly normal. In many
applications, both paracompactness and perfect normality aspects are ensured by the metric character.
Therefore, throughout this section, we assume that (X, d) is a metric space. In addition, let (Y, | -|) be a
Banach space. We recall that the relative interior of a convex set C is a convex set of same dimension and
that ri(C) = ri(C) and ri(C) = C. In the first instance, in order to prove the main result, we focus on the case of
constant (finite-)dimensional images. In addition, compared with Theorem 3.2 of Michael, we suppose first
that X is a metric space and omit the separability of Y. We denote by D; the set D; := {x € X | dim, ¢(x) = i}.
Then we state the following theorem.

Theorem 4.1. Let ¢ : X — 2Y be an Isc correspondence with nonempty convex values. Then, for any i € N, the
restriction of ri(¢) to D; admits a continuous single-valued selection h; : D; — Y. In addition, ifi > O, then there
exists a continuous function f; : D; — ]0, +oo[ such that for any x € D;, we have Rp(x)(h,-(x), Bi(x)) c ri(p(x)).

Once we have Theorem 4.1, we will be able to prove our main result given by

Theorem 4.2. Let X be a metric space and Y a Banach space. Let ¢ : X — 2Y be an Isc correspondence with
nonempty convex values. If for any x € X, @(x) is either finite-dimensional or closed, then ¢ admits a continuous
single-valued selection.

Note that the property of ¢ being either closed or finite-dimensional valued is not inherited by co(¢). Conse-
quently, we can not directly convert Theorem 4.2 in terms of the convex hull. Yet, first, a direct consequence
of both Theorem 4.2 and Theorem 3.1 is the following.

Corollary 4.3. Let X be a metric space and Y a Banach space. Let ¢ : X — 2¥ be an Isc correspondence with
nonempty values. Then co(¢p(x)) admits a continuous single-valued selection.

Secondly, we can also deduce from Theorem 4.2 the following result.

Corollary 4.4. Let X be a metric space and Y a Banach space. Let ¢ : X — 2Y be an Isc correspondence with
nonempty values. If for any x € X, @(x) is either finite-dimensional or closed convex, then co(¢) admits a con-
tinuous single-valued selection.

It is also worth noting that under the conditions of Theorem 4.2, we may have an Isc correspondence with
both closed and finite-dimensional values. This is made clear in the following example.

Example 4.5. Let Y be an infinite-dimensional Banach space and X = [0, 1]. Consider (e, ..., en, . ..) Some
linearly independent normed family of Y. Let ¢ : R — 2V defined by

(0} ifx € {0, 1},
ri(co(0, ep)) ifxe[3,1),

@(x) = {1i(co(0, €0, €1)) ifx €[5, 3),

R4 if x € X€.

Remark that ¢ is Isc on ]0O, 1 since it is locally increasing. In other terms, for any x € X, there exists Vy such
that for all x’ € Vy, we have @(x) c @(x').

Besides, ¢ is 1sc at the point x = 0. It suffices to remark that for € > 0, we have ¢~ (B(0, €)) = R. Indeed,
since for any x € R, 0 € p(x), then B(0, €) N ¢(x) # @. The same argument is used for x = 1. Therefore, we
conclude that ¢ is Isc.

By Theorem 4.2, we can conclude that ¢ admits a continuous selection. It should also be noted that we
can even build an explicit selection.
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Figure 1. Peeling concept. Figure 2. Graphic illustration.

The proofs of Theorem 4.1 and Theorem 4.2 are postponed until Sections 5 and 6 respectively. The proof of
Theorem 4.1 is based on the concept of “peeling” that we will introduce and motivate here.

Definition 4.6. Let C be a nonempty finite-dimensional subset of Y. We say that C' is a peeling of C of param-
eter p > 0 if
C' =T(C, p) := {y € Csuch that B¢(y, p) c ri(C)}.

In order to gain some geometric intuition, the concept is illustrated by Figure 1.

Definition 4.7. Let n be a non-negative real-valued function defined on X, and ¢ a correspondence from X
to Y. We will say that the correspondence ¢, : X — 2V is a peeling of ¢ of parameter 7 if for each x € X, we
have ¢, (x) = ['(@(x), n(x)).

The motivation of the peeling concept is given by the next proposition (whose proof is postponed until the
next section) where we show that when the dimension is constant, continuous peeling of an Isc correspon-
dence is also a (possibly empty) Isc correspondence. This proposition is a key argument for the proof of The-
orem 4.1.

Proposition 4.8. Let ¢ : X — 2Y be an Isc correspondence with nonempty convex values. If there exists an
i € N* such that for any x € X, dim, ¢(x) = i, then the continuity of the function n implies the lower semiconti-

nuity of @y.

Remark 1. The following simple example shows that the above proposition is no more valid if the dimen-
sion of ¢ is equal to zero. Let ¢ : R — 2®, defined by ¢(x) = {0} and n(x) = |x|. Obviously ¢ is Isc and 7 is
continuous, but ¢, : R — 2R is not Isc since n(0) = {0} while for x # 0, we have @n(x) = 0.

Remark 2. Modifying slightly the previous example, we also show that the above proposition does not hold
true if the dimension of ¢ is not constant. Let us consider the case where X =R, Y = R?,and ¢ : X — 27, is
the Isc correspondence defined by

() ={(y1,y2) € R? |y, >0andy, > tan(2 arctan(|x|))y1}, ifx # 0and ¢(0) = [0, 1/2] x {O}.
Using the same 11(x) = |x|, we obtain that when x # 0, ¢,(x) is a translation of ¢(x). More precisely,
Pn(0) = {(1, IxI)} + p(0)

(see Figure 2). In particular, d(¢(0), ¢, (x)) = 1/2, which allows us to conclude that ¢, is not Isc.

5 Proof of Theorem 4.1

In Section 5.1, we first present elementary results about the “peeling” of a set. Section 5.2 is dedicated to
prove some affine geometry results used to prove Proposition 4.8 in Section 5.3. Finally, we deduce Theo-
rem 4.1 from this proposition in the last subsection.
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5.1 Elementary results on a set “peeling”

In this subsection, C is a finite-dimensional set.

Definition 5.1. We define? the internal radius of a finite-dimensional set C by
a(C) := supi{p € R, | there exists y € C such that Ec(y,p) cri(C)}.

Lemma 5.2. Let C be a nonempty convex set. Then one has T'(C, 0) = ri(C). Yet, if a(C) is finite, then we have
I'(C, a(C)) =0.

Proof. The equality on I'(C, 0) is a simple consequence of the definition. Let us prove by contradiction that
I'(C, a(C)) = 0.Indeed, ify € T'(C, a(C)), we have Fc(y, a(C)) c ri(C). By a compactness argument on the circle
of center y and radius a(C) and the openness of ri(C) in aff(C), we can prove the existence of some € > 0 such
that Be(y, a(C) + €) c 1i(C). O

We first establish that a peeling of a convex set remains convex. In addition, we can characterize the
nonemptiness.

Lemma 5.3. Let C be a nonempty convex set and p € [0, +oo[. Then, the set T'(C, p) is convex. In addition, the
set T'(C, p) is nonempty if and only if p < a(C).

Proof. First, we have that I'(C, p) is convex. Let x1, x € I['(C, p) and A € [0, 1]. We claim that
Bc((Axy + (1= A)x2), p) € 1i(C).
By triangle inequality, it is easy to see that
B(Ax1 + (1 - )x2, p) = AB(x1, p) + (1 - V)B(x2, p).
Yet, since ri(C) is convex, then we have
(AB(x1, p) + (1 = A)B(x2, p)) N aff(C) c Ari(C) + (1 - A) 1i(C) = 1i(C),

which establishes the result. Now, remark that if I'(C, p) # 0, then by definition of I', we have p < a(C) and in
view of Lemma 5.2, p < a(C). It remains to prove the converse. Using the definition of a, there exists y, € C
such that Ec(yp,p) c 1i(C). Therefore, y, € I'(C, p). O

Lemma 5.4. Let C be a convex set and p1, p> non-negative real numbers such that p; < p,. Then we have
I'(C, p2) c I(C, p1) c 1i(C).

Proof. Let y € f(C,pz). Since € = p, — p1 > 0, there exists y € I'(C, p2) N B(y, €). Consequently, by trian-
gle inequality, EC(?, p1) C Ec(y, p2), and therefore y € I'(C, p1). Finally, it comes from the definition that
I'(C, p1) cri(C). O

5.2 Affine geometry

Next, we will use known results about linear independence in order to raise a series of results about affine
independence and barycentric coordinates.

Lemma 5.5. The set Y:*! is an open subset of Y'*1.

Proof. Let (zo,...,2i) € Y;i”. In order to get a contradiction, we suppose that for all r > 0, and for all
k€ {0,...,i}, there exists a z; € B(zx, r) such that (z(, ..., z]) are affinely dependent. In particular, for

3 Note that « may value +co. The proofs need to distinguish whether a is finite or infinite. Such a difficulty can be avoided by
considering on Y the metric given by 6(x, y) = min(1, [|x — y||).
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all p e N* and for all k € {0, ..., i}, there exists z;gp € B(zk, 1/p) such that (z(’)’p, e ,zl’.,p) are affinely de-
pendent. Thus, the family of vectors

! ! ! !
(vp,...,vf)=(zl’p—zo’p,...,zi,p—zo’p)

is linearly dependent. Hence, there existsa A? = (AY, ..., A¥) e R?\ {0} such that Y’} _, AZVE = 0. We can nor-
malize by letting pP = A?/||AP| € S;-1(0, 1). By a compactness argument, the sequence p? admits a conver-
gent subsequence u®® to i € S;_1(0, 1). Since for all k € {0, ..., i}, there exists a Z;(’p € B(zk, 1/p), then the
sequence (z;(’p )pen-+ converges to zi. Therefore, we have

i i i
Y O = Y QPP IePvE? =0 - Y Fy(zk - z0).

k=1 k=1 k=1
Thatis, ZLl U (zi — zo) = 0. Since, by the starting assumption, (z1 - 2o, . . . , zi — Zo) islinearly independent,
then we obtain i = 0, which is absurd. O
We recall that if y" = (yg, ..., y}) € Yfl*il, then every point z, of aff(y") has a unique representation

1 1
2= Y Ay, A=A, .. LA eRT, Y AR=1,
k=0 k=0
where Ag, ..., A} are the barycentric coordinates of the point z" relative to (yg, . .., y{'). Using the previous
notations and adopting obvious ones for the limits, our next result is formulated in the following way, where
the assumption y € Yz.l can not be omitted.

Lemma 5.6. Lety" € Y'*! tendingtoy € Y'*'. Let z" € aff(y"). Hence, we have:
(1) Ifz"is bounded, then A" is bounded and z" has a cluster point in aff(y).
(2) Ifz"™ converges to z, then A" converges to A.

Proof. We start by proving assertion (1). We denote by w" = z" — yg. Since Z;(:o A =1, it follows that
W'=Y o AR(Vk - vo)- Hence, w" = ¥, AR(v} - v5). We denote by A" =@}, ..., AM) € R, where the first
component is omitted. First, we will prove by contradiction that A" is bounded. Assume the contrary. Then
there exists a subsequence A¥™ of A" such that [|A¥™| diverges to infinity. Since z" is bounded, it follows
that w¥™/JA¥™| — 0. Moreover, by normalizing, the sequence u¥™ = A¥(™ /|A¥™" | belongs to the compact
set S;_1(0, 1). Therefore, the sequence u¥™ admits a convergent subsequence u%?®) converging to % in
Si_1(0, 1). Thus, we obtain that

wi (@)

i
v - Y 0k~ Yo).

k=1
By uniqueness of the limit, we deduce that Z;@ 1 Vi —yo) = 0. Since (y1 - Yo, ..., Yi — Yo) is independent,
we obtain i = 0, which is impossible. Now it suffices to remark that since A§ = 1 — 22:1 A,'(’, the boundedness
of A" implies the one of A7 and therefore of the whole vector A™.

It remains to check that z" has a cluster point. We have already established that A" is bounded. Therefore,
there admits a convergent subsequence A¥™ converging to A. Hence,

i i
0= 3 O 52 S R,
k=0 k=0

That is, Z is a cluster point of z". Moreover, observe that since ¥} _, A;f'(") = 1 converges to Yi_, Ak, we have
z € aff(y), which establishes the result.

Now, we are able to prove the second assertion. By assertion (1), we know that A" is bounded. By [1],
in order to prove that A" converges to A, we claim that the bounded sequence A" has a unique cluster point.
Using the same notations, let a € F, where F is the set of cluster points of A”. Then there exists a subsequence
AP of A" such that A?™ — a. Consequently,

i i
weP — z Af(n)()’f(n) _ yg(n)) N z ac - Vo)-
k=1 k=1
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Alternatively, we have that w#™ = z¢( _ ¥ 20 converges to

i

i
Yo =D AVi=Yo =), ik ~Yo)»

k=0 k=1
since Z};o Ax = 1. By uniqueness of the limit and given that (y1 - yo, ..., yi — Yo) is independent, we obtain
that aj = Xk, forall k € {1, ..., i}. Therefore, we have a unique cluster point. Consequently, /\Z — Zk, for all
k € {1,...,i}.In addition, for the first component, we obtain /\3 =1- Z,’Zzl /\Z —1- Z,’(’Zl Ak = Ao. Thus, for
all k € {0, ..., i}, we have /IZ — Zk. This completes the proof. O

5.3 Proof of Proposition 4.8

The key argument we will use is based on the following lemma. Note that Tan and Yuan [11] have a similar but
weaker result, since they only treated the case of a finite-dimensional set Y when the images have a nonempty
interior which avoids to introduce the relative interior.

Lemma 5.7 (Fundamental Lemma). Under the assumptions of Theorem 4.1,letx € D;,y > 0andy € T(p(X), y).
Then, for any € €10, y[, there exists a neighborhood V of x such that for every x € V.n D;, we have that
L(p(x),y-€)nB(y,e) +0

Proof. First, let us fixsome ¢ € ]0, y[. In order to simplify the notations, we will assume within this proof that
X = D;. We will start by proving the following claim:

Claim 1. There exists a neighborhood V1 of X, such that for all x € V1, we have E‘P(X) ¥, y-¢€/3) c p(x).

To prove the claim, let us denote by r the positive quantity r = y — £/3. In order to get a contradiction, assume
that forall n > 0, there exists an x,, € B(x, 1/n), and there existsa z" € E(p(xn)()_/, r)suchthat z" ¢ @(x,). Since
for all x € X, we have dim, ¢ (X) = i, there exists (Yo, . .., Vi) € Yﬁfil N ¢(x). Moreover, we have x,, — X and ¢
isIsc. Therefore, for n sufficiently large, there exists yZ — Vi such that J’Z € @o(xp), forallk € {0, ..., 1i}. Using
Lemma 5.5, for n large enough, we obtain that dim, (yg, ..., y!) = i.

Besides, we have z" € aff(p(xy)) = aff(yg, ..., ylf’). Since z, € E(?, r), applying the first assertion of
Lemma 5.6, we conclude that z" has a cluster point z in aff(¢(x)) = aff(y, . . ., ¥i). Furthermore, since
z" € B(y, 1), we have z € B(¥, r) ¢ B(y, y). It follows that z belongs to ri(B (p(x)(y, ¥)).

Hence, in view of the dimension of B »® (¥, y), there exists an i-simplex S; = co(Uy, ..., U;) contained in

(p(x) (y y) such that z € ri(S;). We can write the affine decomposition z = Zk —o0 Mk Uy, for some Ue R*1 such
that Zk o Hi = 1and i, > O.In particular, in view of the assumption of the lemma, Uy c B o® Y, y) Cri(p(X)).
Using again that x, — X and the lower semicontinuity of ¢, we obtain that there exists a sequence U} — Uy
such that U,’(l € @(xy), for all k € {0, ..., i} and n large enough. Then we consider u" = (ug, ..., u}"), the
affine coordinates of z" in (U, ..., U ") Since z" has a cluster pomt zZ, there exists a subsequence z¥™ of z"
converging to z. By assertion (2) of Lemma 5.6, we have y — Uy, forall k € {0, ..., i}. However, p; > O,
then y’/’(") > 0, for n large enough. Consequently, z¥(™ is a convex combination of Uw(") By the convexity of

@(Xy(n)), we conclude that Z¥M ¢ @(Xym)), which is a contradiction. This proves Clalm 1.

Note that an obvious consequence of Claim 1 is that for all x € V;, we have

Boco (7.7 - 5 ) < ritg(n).

Now, since € > 0, we have y € ¢(x) N B(y, £/3). From the lower semicontinuity of ¢, there exists a neigh-
borhood V; of X, such that for all x € V,, we have the existence of some y € ¢(x) n B(y, €/3). Therefore, for
any x € V = V; nV;, we have

By (¥, y—€) CB x)(y y-3 )c 1i(p(x)).
Thus, we finish the proof. O

Note that Proposition 4.8 was already stated without proof in Section 4. We are now ready to prove it.
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Proof of Proposition 4.8. Letus consider an openset O and X € ¢~(0). This means that ¢, (x) N O is nonempty
and contains some y. Since O is an open set containing y, we can first remark that there exists r > 0 such that
B@y,r) c O.

On one hand, by the condition on 7, letting y =
have

M > 0and n; = n(x) + iy, foranyi = {0, ..., 3}, we
n(x) =no <M1 <n2 <n3 =aX).
By the definition of a, there exists z € T'(¢(x), 172). Applying the Fundamental Lemma, we obtain that there
exists a neighborhood V; of X such that for any x € V3, there exists z € I'(¢(x), n1) N B(z, y).
On the other hand, we will distinguish two cases depending whether at a point x, there is or is not a signif-
icant peeling. Let us denote by M = 1 + %(II? - Z|| + y); we will consider the positive number € = min(r/M, y).

First case: n(x) > 0. Let us denote & = min(g, n(x)/2). Since y € ¢, (x) = I'(¢(x), n(x)), then once again, by
the Fundamental Lemma, we have the existence of a neighborhood V of x such that for any x € V;, there
exists y € ['(¢p(x), n(x) — €) N B(y, ). Now, let us consider A = % €]0,1]andy, = (1 - A)y + Az.

Second case: n(x) = 0. In this case, ¢, (X) = ri(¢(X)). Let € = €. Since ¢ is Isc, there exists a neighborhood V,
of X such that for any x € V5, there exists y € ¢(x) n B(y, €) satisfying

Byo(y, 0) € 1i(@(x)).

Now, let us consider A = § €]0,1]and yy = (1 - A)y + Az.

In both cases, since the set ¢(x) is convex, in view of our choice of A, by a simple computation, we can
prove that if x € V1 N V3, then y, € T(p(x), n(X) + €).

Note that in both cases A < 2¢/y. The following computation will show that our choice of € implies y; € O:

lya =yl < (@ =Mlly =yl + Az -yl
<lly -yl +Adlz -zl + Iz - yI)

2¢ _ _
e+ 7(I|Z—ZI| +lz-yl)

2 o
se+7€(y+lly—zll)=£Msr.

Finally, by the continuity of n, there exists a neighborhood V3 of X such that for any x € V3, we have
n(x) - € < n(x) < n(x) + €. Summarizing the previous results, for all x € V, NV, n V3, there exists yy € O
such thatED(X)(yA, nx)) c Ep(x) (¥, n(x) + €) c ri(p(x)), which means thaty, € ¢, (x) n O and establishes the
result. m

5.4 Proof of Theorem 4.1

Using the above lemma 5.7, we are able to prove the following result on the regularity of the internal radius
of an Isc correspondence.

Lemma 5.8. Let us consider ¢ : X — 2V such that there exists some positive integer i such that for all x € X,
dimg @(x) =i. Thena o ¢ : X — R* n {+o0} is a lower semicontinuous function.

Proof. Let us first recall that
a(p(x)) := sup{p € R | there exists y € ¢(x) such that By (¥, p) € ri(@(x))}.

Let us fix X in X, and p < a(¢@(x)). We can consider y such that p < y < a(¢@(x)). By the definition of a, there
exists y € ['(¢(X), y). Now, by the Fundamental Lemma, there exists a neighborhood V of X such that for
all x € V, T(p(x), p) # 0. Using Lemma 5.3, we obtain that for all x in V, a(¢(x)) > p, which establishes the
result. O

An immediate consequence is the following result.

Corollary 5.9. For all positive integers i, there exists n; : D; — R* continuous such that 0 < n;(x) < a(p(x)).
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Proof. Since on D;, a o ¢ is a lower semicontinuous function, the correspondence given by
A:D; — 2%, x—1]0, a(px)]

is 1sc. Applying Michael’s Selection Theorem 3.2, we deduce that there exists a single-valued continuous
selection n; of A. O

Proof of Theorem 4.1. If i = 0, then ¢ is reduced to a singleton on Dy. Moreover, on Dy, the correspondences
¢ and ri(¢p) coincide. Therefore, there exists a mapping ho : Do — Y such that for all x € Do, @(x) = {ho(x)}.
Since ¢ is Isc on Dy, it is well known that hy is a continuous function.

Ifi > 0, let us first apply Corollary 5.9 in order to get a continuous function r;. Consequently, by Proposi-
tion 4.8, we have forany i € IN*, that ¢, is1sc on D;. By a classical result, this implies that Em isalsolscon D;.
Moreover, in view of the double inequality satisfied by n7;, we can apply Lemma 5.3, in order to state that Em is
a correspondence with nonempty convex-closed values. Therefore, applying Theorem 3.1 of Michael gives a
continuous single-valued selection h; of Eqi. That is for any x € D, h;(x) € f(go(x), ni(x)). Since n;(x) > 0, we
can apply Lemma 5.4 in order to show that h;(x) € I'(¢p(x), ni(x)/2). Now, for all x € D;, let Bi(x) := ni(x)/2;
then the previous condition can be rewritten as E(p(x)(hi(x), Bi(x)) c ri(gp(x)), which proves the result. O

It is worth noting that the idea of peeling should be distinguished from the approximation method introduced
by Cellina [2]. Indeed, mainly Cellina’s method consists of approximating an upper semicontinuous corre-
spondence ¢ by a lower semicontinuous one.“ In addition, unlike the peeling concept which can be seen as
an “inside approximation” (the approximated set is a subset of the original one), the approximation of Cellina
is an “outside one” ( the original set is a subset of the approximated one). As it is well known (see [2]), apply-
ing selection theorems to Cellina approximations is used to deduce Kakutani’s fixed point theorem.

We are now ready to prove the main result of this paper.

6 Proof of Theorem 4.2

6.1 Notations and preliminaries

We denote

(i) by D = {x € X | ¢(x) has infinite dimension},

(ii) byD<j=DouUD;U---UD;,

(iii) by Ds; = (D; U Dj41 U+++) U Do

As in the previous section, we begin by listing a series of parallel results which will be used in order to prove
Theorem 4.2. The first one is a classical result (see for example [4]).

Lemma 6.1. Let C be a convex set such that ri(C) is nonempty. Then, for any a such that O < a < 1, we have
(1-a)A +ari(A) c ri(A).

Lemma 6.2. The set Ds; is an open subset of X.

Prpof. Let x € Dy;. Then there exists j > i such that x € Dj. Therefore, since dim, ¢(x) = j, then we have
Yf;lfl naff(¢/*!(x)) # 0 where ¢/*!(x) is the cartesian product ¢/**(x) = @(x) x --- x ¢(x). Since the lower
semicontinuity of ¢ implies that (pff Ljs also Isc, in view of the openness of Yﬂ;l, there exists a neighborhood
Vy of x such that for any x’ € Vy, Yf;lfl naff(¢/*1(x")) # 0. This implies that dim, ¢(x') > j. That is, Vy ¢ D;.
Yet, since Dy; ¢ Dy;, we finish the proof. O

Lemma 6.3. The set D(;_1) is closed in D;.

4 The approximation is given by ¢ (x) = co(U_¢(p(x,e)nx) P(2)-
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Proof. In view of the partition D.; = D.;_1 U D;, in order to prove the result, it suffices to prove that D; is
an open set in D.;. Using the previous remark, we already know that Ds; is an open set of X. Yet, since
D; = D5 n Dg;, the result is established. O

Lemma 6.4. Let X and Y be two topological spaces and F a closed subset of X. Suppose that ¢ : X — 2Y isan
Isc correspondence and f : F — Y is a continuous single-valued selection of ¢r. Then, the correspondence
given by

{foo} ifxeF,
(%) =
v {¢u) ifx ¢ F,

is also Isc.
Proof. Let V be a closed subset of Y. We have

YV ={xeFlpx) cVIUufx e X\F|p(x)c VI={xeF|f(x) e VIu{x e X\ F| @(x) c V}.
Since f is a selection of ¢, we deduce that

xeX|px)cVl={xeX\F|lokx) cVlu{xeF|px) cV}
={xeX\F|lox) cVlu{xeF|f(x)epx) cV}

Therefore,
PV ={xeF|fx)eViufxeX|px) cV}=FfHV)ueHV).
Since ¢ is Isc, the set ¢*(V) is closed. Moreover, since V is a closed subset of Y and f is continuous, it follows

that f~1(V) is a closed subset of F. Now, since F is closed in X, the set f~1(V) is closed in X. Hence, ¥*(V) is
closed, as required. O

6.2 Proof of Theorem 4.2

The proof of Theorem 4.2 is outlined in three steps as follows:
(Step 1) For any k € IN, we have that ri(¢) admits a continuous selection h<y on D.
(Step2) Forany k € N, there exists j : X — ¥ such that
+ j¥is a continuous selection of ¢ on X.
. jk is a continuous selection of ri(¢) on D.
(Step 3) There exists a continuous selection f of ¢ on X.

Proof of Step 1. Let us apply for any k € IN, Theorem 4.1 in order to get the existence of a continuous single-
valued function hy defined on Dy such that for all x € Dy, hi(x) € ri(pk(x)). Let P, be the following heredity
property: the restriction of ri(¢) to D, admits a continuous selection hp,.

For n = 0, it suffices to notice that Dy = Do. Therefore, we can let hy := hg which is a continuous selec-
tion of ri(¢). Thus, Py is true.

Let n > 1. Suppose that P,,_; holds true and let us prove that P, is true. By the heredity hypothesis, we
have that ri(¢) admits a continuous selection h<(y-1) on D<(,-1). We will introduce an auxiliary mapping ¢,
defined on Dy, which is Isc and such that the graph is contained in the graph of ¢, by taking

{hs(n—l)(X)} ifx € Dep1,

@n: Dy — 27 definedby @n(x) =
Pn s Den v on {E(x) if x € Dy,.

By Lemma 6.3 and Lemma 6.4, we conclude that ¢, is 1sc. Moreover, ¢, has closed-convex values. By
Michael’s selection Theorem 3.1, there exists g, continuous such that g,(x) € ¢,(x) c p(x), foreveryx € D,.
In the following, we will construct a continuous single-valued selection h<, of ri(¢) on D,,. We consider the
continuous application A : D, — ]0, 1[ given by

min(d(x, D<p-1), 1)

A = = Rl
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Then we define h;, : Do, — Y given by

{gn(X) ifx € Dep_1,
hen(x) =
(1= A00))gn(x) + A(X)hp(x) ifx € Dy,.

Using the heredity property, we know that h<(,-1) is a selection of ri(¢) on D<(-1). On the other hand, on
Dy, the function h., is a strict convex combination of g, € ¢ and h, € ri(¢), thus by Lemma 6.1, h<, € ri(¢p).
Therefore, we conclude that h., is a selection of ri(¢) on D.y. It remains to check the continuity of h<y,. It is
clear that the restriction of h<, on Dy, (respectively on D.,_1) is continuous. Since D, is open in D, it suffices
to consider the case of a sequence x; € Dy, suchthat x; — X € D<,_1.Itis obvious that since d(xy, D<,_1) tends
to zero, A(xx) tends to zero when xj tends to x. Besides, we have that || h,,(x)]|/(2 + ||h,(X)]|) is bounded. That s,
A(xx)hn(xx) tends to zero when xj tends to x. Therefore, combining the previous remarks and the continuity
of g, allows us to conclude that h<,(xx) tends to g,(x) = h<,(x), which establishes the result. O

Proof of Step 2. Using Lemma 6.2, we have already proved that Ds; is an open set of X. Consequently, D; 1
is closed in X. Using again Lemma 6.3, we can define an Isc function T* : X — 2V given by

T*(x) = {_hsk(x)} if x € Dy,
(5169 if x € Dyjy1.
By Michael’s Selection Theorem 3.1, there exists j* continuous such that for all x € X, j*(x) € T¥(x) c P(x).
That is, j* is a selection of . On the other hand, for any x € D, we have j¥(x) € T¥(x) = {h<x(x)}, which
finishes the proof of Step 2. O

Proof of Step 3. We can write X as a partition between X1 and D, where X1 = | ;< Dk. Under the hypothesis
of Theorem 4.2, we have that D, is a subset of X, where X, = {x € X | ¢(x) has closed values}.
Now, in the spirit of Michael’s proof, for any k € N*, we define

1
max(1, [lj*(x) - o0l

FE00 = A0f* (00 + (1 = A())j°(x),  where Ag(x) =

It is easy to check in view of Lemma 6.1 that for each k € N*, f* is also a selection of ¢ on X satisfying
for any x € Dy, fX(x) € ri(¢p(x)). In addition, we have that fX(x) is bounded since f¥(x) can be written as
Xx) = 7°(x) + Ak(x)(G*(x) - j°(x)) and our choice of Ax(x) ensures that [[fX(x)| < [ljo(X)] + 1.
We can now define for any k € N*,
n
~ 1
n —

freo=% -

k=1

floo, foo= Y .

kelN*

First, we claim that f is continuous at any x € X. As a consequence of the continuity of jo, the set
Wx = {x € X | ljoCOll < ljoGO)ll + 1}

is an open neighborhood of X. Indeed, each f¥ is continuous and the series f" converges uniformly to f on W,
since

“n 00 1 o o] 1
Ifx) = Fr ol < kgﬂ ﬁllfk(X)ll < (Ii°®l +2) k;ﬂ 5

Moreover, we have f(x) € ¢(x) for any x € X, since f is an “infinite convex combination of elements of @(x).

5 We recall that if C is a convex subset of Y, then for any bounded sequence (ck)xen € C and for any sequence of non-negative
real numbers (Ax)en with Y, Ak = 1, the series Y .y AxCi converges to an element of C.
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Now, we claim that for all x € X, f(x) is an element of ¢(x). We have to distinguish three cases.

If x € Dy, then f(x) = jo(x) since ¢(x) is a singleton.

If x € X1 \ Do, then there exists ko(x) > 0 such that x € Dy,x) € D<ky(x)- Let us remark that f(x) can be
written as

AN

f00 = R0 + (=g 3 g o

k#ko(x)

where y = ﬁ Using once again Footnote 5, we easily check that Y ;i % belongs to @(x). There-

fore, by Lemma 6.1, f(x) is an interior point of ¢(x), then a selection of ¢, which finishes the proof.
If x € Dy, then x € X;. That is, ¢(x) = @(x). Since we have already established that f(x) € p(x) for all
x € X, the result is immediate. O
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