期刊论文详细信息
| JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS | 卷:233 |
| Lattices on simplicial partitions | |
| Article; Proceedings Paper | |
| Jaklic, Gasper1,3  Kozak, Jernej1,2  Krajnc, Marjeta2  Vitrih, Vito3  Zagar, Emil1,2  | |
| [1] Univ Ljubljana, FMF, Ljubljana, Slovenia | |
| [2] IMFM, Ljubljana, Slovenia | |
| [3] Univ Primorska, PINT, Koper, Slovenia | |
| 关键词: Lattice; Barycentric coordinates; Simplicial partition; | |
| DOI : 10.1016/j.cam.2009.02.022 | |
| 来源: Elsevier | |
PDF
|
|
【 摘 要 】
In this paper, (d + 1)-pencil lattices on simplicial partitions in R(d) are studied. The barycentric approach naturally extends the lattice from a simplex to a simplicial partition, providing a continuous piecewise polynomial interpolant over the extended lattice. The number of degrees of freedom is equal to the number of vertices of the simplicial partition. The constructive proof of this fact leads to an efficient computer algorithm for the design of a lattice. (C) 2009 Elsevier B.V. All rights reserved.
【 授权许可】
Free
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 10_1016_j_cam_2009_02_022.pdf | 881KB |
PDF