期刊论文详细信息
Physiological Reports
Cellular inhibitor of apoptosis‐2 is a critical regulator of apoptosis in airway epithelial cells treated with asthma‐related inflammatory cytokines
Eugene Roscioli1  Rhys Hamon1  Richard E. Ruffin1  Susan Lester2 
[1] Discipline of Medicine, The Queen Elizabeth Hospital, University of Adelaide, Woodville, South Australia, Australia;Rheumatology Unit, Queen Elizabeth Hospital, Woodville, South Australia, Australia
关键词: Apoptosis;    asthma;    epithelium;    inflammation;    inhibitor of apoptosis protein;   
DOI  :  10.1002/phy2.123
来源: Wiley
PDF
【 摘 要 】

Abstract

Aberrant apoptosis of airway epithelial cells (AECs) is a disease contributing feature in the airways of asthmatics. The proinflammatory cytokines tumor necrosis factor α (TNFα) and interferon γ (IFNγ) are increased in asthma and have been shown to contribute to apoptosis at the airways. In the present study, we investigated the role of the inhibitor of apoptosis protein (IAP) family in primary AECs exposed to TNFα and IFNγ. IAPs are potent regulators of caspase activity elicited by the intrinsic and extrinsic apoptosis pathways. However, while caspase-mediated apoptosis was observed in AECs exposed to doxorubicin, it was not observed after cytokine treatment. Instead, AECs exhibited proapoptotic changes evidenced by an increased Bax:Bcl2 transcript ratio and partial processing of procaspase-3. Examination by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western analysis showed that proapoptotic changes were associated with a time- and dose-dependent induction of cellular IAP-2 (cIAP2), potentiated primarily by IFNγ. The abundance of the IAP antagonists X-linked IAP-associated factor 1 (XAF1) and second mitochondria-derived activator of caspases did not change, although a moderate nuclear redistribution was observed for XAF1, which was also observed for cIAP2. Small interfering RNA (siRNA)-mediated depletion of cIAP2 from AECs leads to caspase-3 activation and poly (ADP-ribose) polymerase cleavage, but this required extended cytokine exposure to produce a concomitant decrease in cIAP1 and Bcl2. These results indicate that AECs possess endogenous mechanisms making them highly resistant to apoptosis due to asthma-related inflammatory cytokines, and the activity of cIAP2 plays an important role in this protection.

【 授权许可】

CC BY   
© 2013 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202107150005377ZK.pdf 1597KB PDF download
  文献评价指标  
  下载次数:6次 浏览次数:6次