| Cancer & Metabolism | |
| GLUT5 (SLC2A5) enables fructose-mediated proliferation independent of ketohexokinase | |
| Charles J. Murphy1  Ezequiel Dantas2  Roger J. Liang3  Seo-Kyoung Hwang3  Shakti Ramsamooj3  Marcus D. Goncalves3  Samuel Taylor4  Kyu Y. Rhee5  Navid Nahiyaan5  Lewis C. Cantley6  Junho Song6  Bryan Ngo7  Shuyuan Cheng8  Ting-Wei Hsu8  Rahul Grover9  | |
| [1] Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA;Department of Pathology, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA;Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, 10065, New York, NY, USA;Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, 10065, New York, NY, USA;Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, 10065, New York, NY, USA;Division of Endocrinology, Weill Department of Medicine, Weill Cornell Medicine, 10065, New York, NY, USA;Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, 10065, New York, NY, USA;Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 10065, New York, NY, USA;Weill Cornell/Rockefeller/Sloan Kettering Tri-I MD-PhD program, 10065, New York, NY, USA;Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medicine, 10065, New York, NY, USA;Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, 10065, New York, NY, USA;Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, 10065, New York, NY, USA;Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 10065, New York, NY, USA;Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 10065, New York, NY, USA;Weill Cornell Medical College, Weill Cornell Medicine, 10065, New York, NY, USA; | |
| 关键词: Fructose; Ketohexokinase; Hexokinase; GLUT5 (SLC2A5); Metabolism; | |
| DOI : 10.1186/s40170-021-00246-9 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
BackgroundFructose is an abundant source of carbon and energy for cells to use for metabolism, but only certain cell types use fructose to proliferate. Tumor cells that acquire the ability to metabolize fructose have a fitness advantage over their neighboring cells, but the proteins that mediate fructose metabolism in this context are unknown. Here, we investigated the determinants of fructose-mediated cell proliferation.MethodsLive cell imaging and crystal violet assays were used to characterize the ability of several cell lines (RKO, H508, HepG2, Huh7, HEK293T (293T), A172, U118-MG, U87, MCF-7, MDA-MB-468, PC3, DLD1 HCT116, and 22RV1) to proliferate in fructose (i.e., the fructolytic ability). Fructose metabolism gene expression was determined by RT-qPCR and western blot for each cell line. A positive selection approach was used to “train” non-fructolytic PC3 cells to utilize fructose for proliferation. RNA-seq was performed on parental and trained PC3 cells to find key transcripts associated with fructolytic ability. A CRISPR-cas9 plasmid containing KHK-specific sgRNA was transfected in 293T cells to generate KHK-/- cells. Lentiviral transduction was used to overexpress empty vector, KHK, or GLUT5 in cells. Metabolic profiling was done with seahorse metabolic flux analysis as well as LC/MS metabolomics. Cell Titer Glo was used to determine cell sensitivity to 2-deoxyglucose in media containing either fructose or glucose.ResultsWe found that neither the tissue of origin nor expression level of any single gene related to fructose catabolism determine the fructolytic ability. However, cells cultured chronically in fructose can develop fructolytic ability. SLC2A5, encoding the fructose transporter, GLUT5, was specifically upregulated in these cells. Overexpression of GLUT5 in non-fructolytic cells enabled growth in fructose-containing media across cells of different origins. GLUT5 permitted fructose to flux through glycolysis using hexokinase (HK) and not ketohexokinase (KHK).ConclusionsWe show that GLUT5 is a robust and generalizable driver of fructose-dependent cell proliferation. This indicates that fructose uptake is the limiting factor for fructose-mediated cell proliferation. We further demonstrate that cellular proliferation with fructose is independent of KHK.
【 授权许可】
CC BY
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202107027971258ZK.pdf | 1647KB |
PDF