期刊论文详细信息
Journal of Biomedical Science
An increase in adenosine-5’-triphosphate (ATP) content in rostral ventrolateral medulla is engaged in the high fructose diet-induced hypertension
Chih-Wei Wu1  Julie YH Chan1  Chun-Ying Hung1  Kay LH Wu1 
[1] Center for Translational Research in Biomedical Sciences, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Kaohsiung 83301, Taiwan
关键词: Hypertension;    Rostral ventrolateral medulla;    Ketohexokinase;    Glucose transporter;    Fructolysis;    Fructose;    Metabolic syndrome;    Adenosine-5’-triphosphate;   
Others  :  821242
DOI  :  10.1186/1423-0127-21-8
 received in 2013-11-01, accepted in 2014-01-20,  发布年份 2014
PDF
【 摘 要 】

Background

The increase in fructose ingestion has been linked to overdrive of sympathetic activity and hypertension associated with the metabolic syndrome. The premotor neurons for generation of sympathetic vasomotor activity reside in the rostral ventrolateral medulla (RVLM). Activation of RVLM results in sympathoexcitation and hypertension. Neurons in the central nervous system are able to utilize fructose as a carbon source of ATP production. We examined in this study whether fructose affects ATP content in RVLM and its significance in the increase in central sympathetic outflow and hypertension induced by the high fructose diet (HFD).

Results

In normotensive rats fed with high fructose diet (HFD) for 12 weeks, there was a significant increase in tissue ATP content in RVLM, accompanied by the increases in the sympathetic vasomotor activity and blood pressure. These changes were blunted by intracisternal infusion of an ATP synthase inhibitor, oligomycin, to the HFD-fed animals. In the catecholaminergic-containing N2a cells, fructose dose-dependently upregulated the expressions of glucose transporter 2 and 5 (GluT2, 5) and the rate-limiting enzyme of fructolysis, ketohexokinase (KHK), leading to the increases in pyruvate and ATP production, as well as the release of the neurotransmitter, dopamine. These cellular events were significantly prevented after the gene knocking down by lentiviral transfection of small hairpin RNA against KHK.

Conclusion

These results suggest that increases in ATP content in RVLM may be engaged in the augmented sympathetic vasomotor activity and hypertension associated with the metabolic syndrome induced by the HFD. At cellular level, the increase in pyruvate levels via fructolysis is involved in the fructose-induced ATP production and the release of neurotransmitter.

【 授权许可】

   
2014 Wu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712071052861.pdf 1982KB PDF download
Figure 8. 95KB Image download
Figure 7. 105KB Image download
Figure 6. 87KB Image download
Figure 5. 88KB Image download
Figure 4. 99KB Image download
Figure 3. 80KB Image download
Figure 2. 68KB Image download
Figure 1. 59KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Malik VS, Schulze MB, Hu FB: Intake of sugar-sweetened beverages and weight gain: a systematic review. Am J Clin Nutr 2006, 84:274-288.
  • [2]Dekker MJ, Su Q, Baker C, Rutledge AC, Adeli K: Fructose: a highly lipogenic nutrient implicated in insulin resistance, hepatic steatosis, and the metabolic syndrome. Am J Physiol Endocrinol Metab 2010, 299:E685-E694.
  • [3]Tappy L, Lê KA: Metabolic effects of fructose and the worldwide increase in obesity. Physiol Rev 2010, 90:23-46.
  • [4]Johnson RJ, Segal MS, Yuri S, Takahiko N, Feig DI, Duk-Hee K, Gersch MS, Steven B, Sánchez-Lozada LG: Potential role of sugar (fructose) in the epidemic of hypertension, obesity and the metabolic syndrome, diabetes, kidney disease, and cardiovascular disease. Am J Clin Nutr 2007, 86:899-906.
  • [5]Khitan Z, Kim DH: Fructose: a key factor in the development of metabolic syndrome and hypertension. J Nutr Metab 2013, 2013:682673.
  • [6]Farah V, Elased KM, Chen Y, Key MP, Cunha TS, Irigoyen MC, Morris M: Nocturnal hypertension in mice consuming a high fructose diet. Auton Neurosci 2006, 130:41-50.
  • [7]Mayer MA, Höcht C, Gironacci M, Opezzo JA, Taira CA, Fernández BE, Puyó AM: Hypothalamic angiotensinergic-noradrenergic systems interaction in fructose induced hypertension. Regul Pept 2008, 146:38-45.
  • [8]Izumi Y, Katsuki H, Zorumski CF: Monocarboxylates (pyruvate and lactate) as alternative energy substrates for the induction of long-term potentiation in rat hippocampal slices. Neurosci Lett 1997, 232:17-20.
  • [9]Izumi Y, Zorumski CF: Glial-neuronal interactions underlying fructose utilization in rat hippocampal slices. Neuroscience 2009, 161:847-854.
  • [10]Funari VA, Herrera VL, Freeman D, Tolan DR: Genes required for fructose metabolism are expressed in Purkinje cells in the cerebellum. Brain Res Mol Brain Res 2005, 142:115-122.
  • [11]Cassaglia PA, Hermes SM, Aicher SA, Brooks VL: Insulin acts in the arcuate nucleus to increase lumbar sympathetic nerve activity and baroreflex function in rats. J Physiol 2011, 589:1643-1662.
  • [12]Cha SH, Wolfgang M, Tokutake Y, Chohnan S, Lane MD: Differential effects of central fructose and glucose on hypothalamic malonyl-CoA and food intake. Proc Natl Acad Sci U S A 2008, 105:16871-16875.
  • [13]Ross CA, Ruggiero DA, Joh TH, Park DH, Reis DJ: Rostral ventrolateral medulla: selective projections to the thoracic autonomic cell column from the region containing C1 adrenaline neurons. J Comp Neurol 1984, 228:168-185.
  • [14]Schreihofer AM, Stornetta RL, Guyenet PR: Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in rat. J Physiol 2000, 529:221-236.
  • [15]Ito S, Komatsu K, Tsukamoto K, Sved AF: Excitatory amino acids in the rostral ventrolateral medulla support blood pressure in spontaneously hypertensive rats. Hypertension 2000, 35:413-417.
  • [16]Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR, Lopes OU: Role of the medulla oblongata in hypertension. Hypertension 2001, 38:549-554.
  • [17]Chan SHH, Hsu KS, Huang CC, Wang LL, Ou CC, Chan JYH: NADPH oxidase-derived superoxide anion mediates angiotensin II-induced pressor effect via activation of p38 mitogen-activated protein kinase in the rostral ventrolateral medulla. Circ Res 2005, 97:772-780.
  • [18]Chan SHH, Wu CA, Wu KLH, Ho YH, Chang AYW, Chan JYH: Transcriptional upregulation of mitochondrial uncoupling protein 2 protects against oxidative stress-associated neurogenic hypertension. Circ Res 2009, 105:886-896.
  • [19]Tai MH, Wang LL, Wu KLH, Chan JYH: Increased superoxide anion in rostral ventrolateral medulla contributes to hypertension in spontaneously hypertensive rats via interactions with nitric oxide. Free Radic Biol Med 2005, 38:450-462.
  • [20]Chan SHH, Wu CWJ, Chang AYW, Hsu KS, Chan JYH: Transcriptional upregulation of brain-derived neurotrophic factor in rostral ventrolateral medulla by angiotensin II: significance in superoxide homeostasis and neural regulation of arterial pressure. Circ Res 2010, 107:1127-1139.
  • [21]Wu KLH, Chan SHH, Chan JYH: Neuroinflammation and oxidative stress in rostral ventrolateral medulla contribute to neurogenic hypertension induced by systemic inflammation. J Neuroinflammation 2012, 9:212. BioMed Central Full Text
  • [22]Tremblay RG, Sikorska M, Sandhu JK, Lanthier P, Ribecco-Lutkiewicz M, Bani-Yaghoub M: Differentiation of mouse Neuro 2A cells into dopamine neurons. J Neurosci Methods 2010, 186:60-67.
  • [23]Mancia G, Bousquet P, Elghozi JL, Esler M, Grassi G, Julius S, Reid J, Van Zwieten PA: The sympathetic nervous system and the metabolic syndrome. J Hypertens 2007, 25:909-920.
  • [24]Altuncu ME, Baspinar O, Keskin M: The use of short-term analysis of heart rate variability to assess autonomic function in obese children and its relationship with metabolic syndrome. Cardiol J 2012, 19:501-506.
  • [25]Tentolouris N, Argyrakopoulou G, Katsilambros N: Perturbed autonomic nervous system function in metabolic syndrome. Neuromolecular 2008, 10:169-178.
  • [26]de Moura RF, Ribeiro C, de Oliveira JA, Stevanato E, de Mello MA: Metabolic syndrome signs in Wistar rats submitted to different high-fructose ingestion protocols. Br J Nutr 2009, 101:1178-1184.
  • [27]Moraes-Silva IC, De La Fuente RN, Mostarda C, Rosa K, Flues K, Damaceno-Rodrigues NR, Caldini EG, De Angelis K, Krieger EM, Irigoyen MC: Baroreflex deficit blunts exercise training-induced cardiovascular and autonomic adaptations in hypertensive rats. Clin Exp Pharmacol Physiol 2010, 37:e114-e120.
  • [28]Zamami Y, Takatori S, Hobara N, Yabumae N, Tangsucharit P, Jin X, Hashikawa N, Kitamura Y, Sasaki K, Kawasaki H: Hyperinsulinemia induces hypertension associated with neurogenic vascular dysfunction resulting from abnormal perivascular innervations in rat mesenteric resistance arteries. Hypertens Res 2011, 34:1190-1196.
  • [29]Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T: Sympathoexcitation by oxidative stress in the brain mediates arterial pressure elevation in obesity-induced hypertension. Circulation 2009, 119:978-986.
  • [30]Kishi T, Hirooka Y, Ogawa K, Konno S, Sunagawa K: Calorie restriction inhibits sympathetic nerve activity via anti-oxidant effect in the rostral ventrolateral medulla of obesity-induced hypertensive rats. Clin Exp Hypertens 2011, 33:240-245.
  • [31]Hayward LF, Castellanos M, Noah C: Cardiorespiratory variability following repeat acute hypoxia in the conscious SHR versus two normotensive rat strains. Auton Neurosci 2012, 171:58-65.
  • [32]Oron-Herman M, Kamari Y, Grossman E, Yeger G, Peleg E, Shabtay Z, Shamiss A, Sharabi Y: Metabolic syndrome: comparison of the two commonly used animal models. Am J Hypertens 2008, 21:1018-1022.
  • [33]Sharabi Y, Oron-Herman M, Kamari Y, Avni I, Peleg E, Shabtay Z, Grossman E, Shamiss A: Effect of PPAR-gamma agonist on adiponectin levels in the metabolic syndrome: lessons from the high fructose fed rat model. Am J Hypertens 2007, 20:206-210.
  • [34]Fried SK, Rao SP: Sugars, hypertriglyceridemia, and cardiovascular disease. Am J Clin Nutr 2003, 78:873S-880S.
  • [35]Sun MK, Wahlestedt C, Reis DJ: Action of externally applied ATP on rat reticulospinal vasomotor neurons. Eur J Pharmacol 1992, 224:93-96.
  • [36]Ralevic V, Thomas T, Burnstock G, Spyer KM: Characterization of P2 receptors modulating neural activity in rat rostral ventrolateral medulla. Neuroscience 1999, 94:867-878.
  • [37]Ralevic V: P2 receptors in the central and peripheral nervous systems modulating sympathetic vasomotor tone. J Auton Nerv Syst 2000, 81:205-211.
  • [38]Ishimoto T, Lanaspa MA, Le MT, Garcia GE, Diggle CP, Maclean PS, Jackman MR, Asipu A, Roncal-Jimenez CA, Kosugi T, Rivard CJ, Maruyama S, Rodriguez-Iturbe B, Sánchez-Lozada LG, Bonthron DT, Sautin YY, Johnson RJ: Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proc Natl Acad Sci U S A 2012, 109:4320-4325.
  • [39]Zhao FQ, Keating AF: Functional properties and genomics of glucose transporters. Curr Genomics 2007, 8:113-128.
  • [40]Barone S, Fussell SL, Singh AK, Lucas F, Xu J, Kim C, Wu X, Yu Y, Amlal H, Seidler U, Zuo J, Soleimani M: Slc2a5 (Glut5) is essential for the absorption of fructose in the intestine and generation of fructose-induced hypertension. J Biol Chem 2009, 284:5056-5066.
  • [41]Kellett GL, Brot-Laroche E: Apical GLUT2: a major pathway of intestinal sugar absorption. Diabetes 2005, 54:3056-3062.
  • [42]Kellett GL, Brot-Laroche E, Mace OJ, Leturque A: Sugar absorption in the intestine: the role of GLUT2. Annu Rev Nutr 2008, 28:35-54.
  • [43]Keating DJ: Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J Neurochem 2008, 104:298-305.
  • [44]Mochida S: Activity-dependent regulation of synaptic vesicle exocytosis and presynaptic short-term plasticity. Neurosci Res 2011, 70:16-23.
  • [45]Zimmermann H, Volknandt W, Wittich B, Hausinger A: Synaptic vesicle life cycle and synaptic turnover. J Physiol Paris 1993, 87:159-170.
  • [46]Sánchez-Lozada LG, Tapia E, Jiménez A, Bautista P, Cristóbal M, Nepomuceno T, Soto V, Avila-Casado C, Nakagawa T, Johnson RJ, Herrera-Acosta J, Franco M: Fructose-induced metabolic syndrome is associated with glomerular hypertension and renal microvascular damage in rats. Am J Physiol Renal Physiol 2007, 92:F423-F429.
  • [47]Tappy L, Lê KA, Tran C, Paquot N: Fructose and metabolic diseases: new findings, new questions. Nutrition 2010, 26:1044-1049.
  • [48]Huang F, Lezama MA, Ontiveros JA, Bravo G, Villafaña S, del-Rio-Navarro BE, Hong E: Effect of losartan on vascular function in fructose-fed rats: the role of perivascular adipose tissue. Clin Exp Hypertens 2010, 32:98-104.
  • [49]Cox CL, Stanhope KL, Schwarz JM, Graham JL, Hatcher B, Griffen SC, Bremer AA, Berglund L, McGahan JP, Keim NL, Havel PJ: Circulating concentrations of monocyte chemoattractant protein-1, plasminogen activator inhibitor-1, and soluble leukocyte adhesion molecule-1 in overweight/obese men and women consuming fructose- or glucose-sweetened beverages for 10 weeks. J Clin Endocrinol Metab 2011, 96:E2034-E2038.
  • [50]Yokozawa T, Kim HJ, Cho EJ: Gravinol ameliorates high-fructose-induced metabolic syndrome through regulation of lipid metabolism and proinflammatory state in rats. J Agric Food Chem 2008, 56:5026-5032.
  • [51]Singh PP, Mahadi F, Roy A, Sharma P: Reactive oxygen species, reactive nitrogen species and antioxidants in etiopathogenesis of diabetes mellitus type-2. Indian J Biochem 2009, 24:324-342.
  • [52]Page KA, Chan O, Arora J, Belfort-Deaguiar R, Dzuira J, Roehmholdt B, Cline GW, Naik S, Sinha R, Constable RT, Sherwin RS: Effects of fructose vs glucose on regional cerebral blood flow in brain regions involved with appetite and reward pathways. JAMA 2013, 309:63-70.
  • [53]Daneman R, Zhou L, Kebede AA, Barres BA: Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 2010, 468:562-566.
  • [54]Price TO, Eranki V, Banks WA, Ercal N, Shah GN: Topiramate treatment protects blood–brain barrier pericytes from hyperglycemia-induced oxidative damage in diabetic mice. Endocrinology 2012, 153:362-372.
  • [55]Ben Achour S, Pascual O: Astrocyte-neuron communication: functional consequences. Neurochem Res 2012, 37:2464-2473.
  文献评价指标  
  下载次数:48次 浏览次数:7次